Search results

Search for "allyl" in Full Text gives 514 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Base-free enantioselective SN2 alkylation of 2-oxindoles via bifunctional phase-transfer catalysis

  • Mili Litvajova,
  • Emiliano Sorrentino,
  • Brendan Twamley and
  • Stephen J. Connon

Beilstein J. Org. Chem. 2021, 17, 2287–2294, doi:10.3762/bjoc.17.146

Graphical Abstract
  • delight, relatively electron-rich benzyl bromides were able to afford products in high yields and with improved product ee – up to 90% (Table 2, entries 8 and 9). Attention then switched to non-benzyl bromide-based electrophiles – however, use of allyl iodide was able to furnish product 10Aj with only 51
PDF
Album
Supp Info
Letter
Published 02 Sep 2021

Halides as versatile anions in asymmetric anion-binding organocatalysis

  • Lukas Schifferer,
  • Martin Stinglhamer,
  • Kirandeep Kaur and
  • Olga García Macheño

Beilstein J. Org. Chem. 2021, 17, 2270–2286, doi:10.3762/bjoc.17.145

Graphical Abstract
  • have been provided by the group of Jacobsen in the nucleophilic addition of indoles 17 to pyranones 62 (Scheme 14a) [71], as well as in the enantioselective synthesis of α-allyl amino esters 67 by the reaction of α-chloro amino acid derivatives 65 with allyltin and allylsilane 66 nucleophiles [72
PDF
Album
Review
Published 01 Sep 2021

Photoredox catalysis in nickel-catalyzed C–H functionalization

  • Lusina Mantry,
  • Rajaram Maayuri,
  • Vikash Kumar and
  • Parthasarathy Gandeepan

Beilstein J. Org. Chem. 2021, 17, 2209–2259, doi:10.3762/bjoc.17.143

Graphical Abstract
  • ]. In this context, Tambar developed a δ-selective C(sp3)–H allylation of aliphatic amides 64 using allyl chlorides 65 under visible light photoredox nickel catalysis (Scheme 34) [112]. The optimized reaction conditions exhibited good tolerance to a variety of substitutions on the allyl chloride
PDF
Album
Review
Published 31 Aug 2021

Chemical syntheses and salient features of azulene-containing homo- and copolymers

  • Vijayendra S. Shetti

Beilstein J. Org. Chem. 2021, 17, 2164–2185, doi:10.3762/bjoc.17.139

Graphical Abstract
  • by using [Pd(allyl)Cl]2 and JackiePhos as a ligand to obtain the polymer 30 in 52% yield. The deprotection of the N-Boc functionality led to the formation of poly[2,6-aminoazulene] 31 in excellent yields (Scheme 7C). The N-Boc-protected polymer 30 possessed good solubility in organic solvents and its
PDF
Album
Review
Published 24 Aug 2021

Catalyzed and uncatalyzed procedures for the syntheses of isomeric covalent multi-indolyl hetero non-metallides: an account

  • Ranadeep Talukdar

Beilstein J. Org. Chem. 2021, 17, 2102–2122, doi:10.3762/bjoc.17.137

Graphical Abstract
  • used with TFAA to obtain diallyl intermediate 127. The latter undergoes a [3,3]-sigmatropic reaction to afford allyl (2-allylindol-3-yl)sulfide 128, which is oxidized by m-CPBA to sulfine 124. Repetition of the steps along with indole addition led to the desired products. Here the absence of a β
PDF
Album
Review
Published 19 Aug 2021

Preparation of mono-substituted malonic acid half oxyesters (SMAHOs)

  • Tania Xavier,
  • Sylvie Condon,
  • Christophe Pichon,
  • Erwan Le Gall and
  • Marc Presset

Beilstein J. Org. Chem. 2021, 17, 2085–2094, doi:10.3762/bjoc.17.135

Graphical Abstract
  • primary activated alkyl halides such as allyl (3bf, 81%) or benzyl (3bh, 76%), but lower with a base-sensitive propargyl group (3bg, 58%). More functionalized lateral chains like a chlorobutyl group could be introduced efficiently (3bj, 91%) and the use of protected aminated or hydroxylated derivatives
  • . SMAHOs bearing classical ester groups could be obtained in moderate yields (iPr: 51%; Bn: 53%; allyl: 52%) and the use of less nucleophilic alcohols such as t-BuOH, 2,2,2-trifluoroethanol, (−)-menthol, and phenol led to decreased yields (37%, 34%, 28%, and 17%, respectively). More functionalized alcohols
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2021

Enantioenriched α-substituted glutamates/pyroglutamates via enantioselective cyclopropenimine-catalyzed Michael addition of amino ester imines

  • Zara M. Seibel,
  • Jeffrey S. Bandar and
  • Tristan H. Lambert

Beilstein J. Org. Chem. 2021, 17, 2077–2084, doi:10.3762/bjoc.17.134

Graphical Abstract
  • isopropyl completely suppressed reactivity (Table 2, entry 8). On the other hand, allyl (Table 2, entry 9) and propargyl (Table 2, entry 10) groups proved to viable substituents, leading to the products in good yield and high enantioselectivities. Of course, these two functional groups provide convenient
PDF
Album
Supp Info
Letter
Published 17 Aug 2021

A study on selective transformation of norbornadiene into fluorinated cyclopentane-fused isoxazolines

  • Zsanett Benke,
  • Attila M. Remete and
  • Loránd Kiss

Beilstein J. Org. Chem. 2021, 17, 2051–2066, doi:10.3762/bjoc.17.132

Graphical Abstract
  • the selectivity of olefin bonds during a CM reaction [38][39][40][41][42][43]. Investigations of various types of olefins in CM, such as substituted and functionalized styrenes, unsaturated tertiary alcohols, olefins with quaternary carbon centers, acrylates, allyl ethers or allyl acetates gave a
  • used in our CM steps. CM reactions of compound (±)-4 were investigated first. With 4-bromo-3,3,4,4-tetrafluorobut-1-ene and allyl 2,2,2-trifluoroacetate, no CM product was observed. However, CM reactions with 1,1,1,3,3,3-hexafluoropropan-2-yl acrylate (7c) were successful (Scheme 1 and Table 1). When
PDF
Album
Supp Info
Full Research Paper
Published 13 Aug 2021

Progress and challenges in the synthesis of sequence controlled polysaccharides

  • Giulio Fittolani,
  • Theodore Tyrikos-Ergas,
  • Denisa Vargová,
  • Manishkumar A. Chaube and
  • Martina Delbianco

Beilstein J. Org. Chem. 2021, 17, 1981–2025, doi:10.3762/bjoc.17.129

Graphical Abstract
  • temperatures. Allyl groups provided a valid alternative and could be removed with palladium chloride at 60 °C in 4 hours [90]. Chemical synthesis grants full control over the polymer length, avoiding non-uniform dispersions of MW obtained by polymerization. Polymers with virtually any possible pattern of
PDF
Album
Review
Published 05 Aug 2021

On the application of 3d metals for C–H activation toward bioactive compounds: The key step for the synthesis of silver bullets

  • Renato L. Carvalho,
  • Amanda S. de Miranda,
  • Mateus P. Nunes,
  • Roberto S. Gomes,
  • Guilherme A. M. Jardim and
  • Eufrânio N. da Silva Júnior

Beilstein J. Org. Chem. 2021, 17, 1849–1938, doi:10.3762/bjoc.17.126

Graphical Abstract
  • (III) salts and AlMe3 as a base for the regioselective ortho functionalization of aromatic secondary amides has been recently reported [121]. The reaction is performed with 1–2 mol % of CrCl3 or Cr(aca)3, a stoichiometric amount of AlMe3 and bromoalkynes (Scheme 15B), allyl bromide or 1,4-dihydro-1,4
PDF
Album
Review
Published 30 Jul 2021

Sustainable manganese catalysis for late-stage C–H functionalization of bioactive structural motifs

  • Jongwoo Son

Beilstein J. Org. Chem. 2021, 17, 1733–1751, doi:10.3762/bjoc.17.122

Graphical Abstract
  • peptide–carbohydrate conjugation was achieved using tryptophan-containing peptides 29 and sugar-containing allyl carbonates 30 in chemo- and site-selective manners using a pyridyl directing group. The optimized reaction conditions entailed the use of dimanganese decacarbonyl as the catalyst and sodium
PDF
Album
Review
Published 26 Jul 2021

Electron-rich triarylphosphines as nucleophilic catalysts for oxa-Michael reactions

  • Susanne M. Fischer,
  • Simon Renner,
  • A. Daniel Boese and
  • Christian Slugovc

Beilstein J. Org. Chem. 2021, 17, 1689–1697, doi:10.3762/bjoc.17.117

Graphical Abstract
  • h but TMTPP is again a distinctly better catalyst providing 73% conversion after 1 h and almost full conversion (98%) after 24 h. Allyl alcohol (c) is more reactive than 1-propanol as conversions with all catalysts at all conditions are slightly higher. Most importantly, the TMTPP-catalyzed reaction
  • than those presented here can be achieved [22][23]. Switching to the weaker Michael acceptor acrylamide (E = −23.54 for N,N-dimethylacrylamide) [19], no useful conversions on any account were obtained. However, TMTPP performs best, giving 61 and 74% conversions with 1-propanol (b) and allyl alcohol (c
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2021

Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances

  • Thiago S. Silva and
  • Fernando Coelho

Beilstein J. Org. Chem. 2021, 17, 1565–1590, doi:10.3762/bjoc.17.112

Graphical Abstract
  • engage in a retarding radical pathway with the olefin to generate an allyl radical species via H abstraction. TBC acts on this species through hydrogen atom transfer to regenerate the olefin double bond and allows its reentry into the productive catalytic cycle (a repair chain step), thereby allowing the
PDF
Album
Review
Published 07 Jul 2021

Cascade intramolecular Prins/Friedel–Crafts cyclization for the synthesis of 4-aryltetralin-2-ols and 5-aryltetrahydro-5H-benzo[7]annulen-7-ols

  • Jie Zheng,
  • Shuyu Meng and
  • Quanrui Wang

Beilstein J. Org. Chem. 2021, 17, 1481–1489, doi:10.3762/bjoc.17.104

Graphical Abstract
  • reaction leading to the 4-allyl-substituted tetrahydronaphthalen-2-ol 14ai in 65% yield. On comparing the results from the anisole-type nucleophiles or thiophene with that from furans, it was observed that the reactions with furans furnished predominantly trans-14af and trans-14ag with a high degree of
  • carbon-nucleophile. As expected, the 4-allyl-substituted tetrahydronaphthalen-2-ol 14ai was obtained, again, as a mixture of cis/trans-isomers in a ratio of 44:56. This example demonstrates the general synthetic utility of this cascade protocol. Encouraged by the success of using 13a as the substrate
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2021

Double-headed nucleosides: Synthesis and applications

  • Vineet Verma,
  • Jyotirmoy Maity,
  • Vipin K. Maikhuri,
  • Ritika Sharma,
  • Himal K. Ganguly and
  • Ashok K. Prasad

Beilstein J. Org. Chem. 2021, 17, 1392–1439, doi:10.3762/bjoc.17.98

Graphical Abstract
  • ′-ketonucloside 1 with trimethylsulfoxonium iodide in DMSO afforded the spironucleoside 2, which in turn was converted to the TIPDS-protected 2′-(pyrimidin-1-yl)methyl-/2′-(purin-9-yl)methylarabinofuranosyluracil derivatives 3a–f by nucleophilic epoxide ring opening with thymine, N-benzoyladenine, 6-O-allyl-N
  • oligonucleotides [42]. Pedersen and Nielsen [35] synthesized a double-headed nucleoside with two different nucleobases, i.e., 2′-deoxy-2′-(thymine-1-yl)ethyluridine (11) (Scheme 3). The oxidative cleavage of the allyl group in TIPDS-protected 2-allyl-2-deoxyuridine 8 gave the TIPDS-protected hydroxynucleoside 9 as
  • -(2-(thymine-1-yl)ethyl)thymidine (118) with an additional nucleobase at the 5′-(S)-C-position of thymidine. Double-headed nucleoside 118 was synthesized starting from 3′-tert-butyldiphenylsilyl (TBDPS)-protected thymidine 115 which was converted into the pixylated 5′(S)-C-allyl-substituted nucleoside
PDF
Album
Review
Published 08 Jun 2021
Graphical Abstract
  • , compound 2 was subjected to nitration followed by reduction to deliver triaminotruxene 4 in excellent yield. Later, compound 4 was subjected to six-fold N-allylation in the presence of NaH/allyl bromide to provide the required compound 3 which was directly treated with G-I catalyst (9) to afford the
  • ) and allyl bromide (0.48 mL, 5.52 mmol) at 0 °C under nitrogen atmosphere. The mixture was stirred at rt for 12 h. After completion of the reaction (TLC monitoring), the reaction mixture was quenched with saturated NH4Cl and the aqueous layer was extracted with EtOAc (50 mL × 3), dried over Na2SO4. The
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

N-tert-Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles

  • Joseane A. Mendes,
  • Paulo R. R. Costa,
  • Miguel Yus,
  • Francisco Foubelo and
  • Camilla D. Buarque

Beilstein J. Org. Chem. 2021, 17, 1096–1140, doi:10.3762/bjoc.17.86

Graphical Abstract
  • , when the allylation was performed in the presence of indium metal, in a saturated aqueous solution of sodium bromide, a mixture of the bromoallylation and allylation products 25 and 26, respectively, were obtained [69]. The addition of the allyl unit to the imines proceeded with total facial
  • diastereoselectivity, producing also preferably diastereoisomers with anti relative configuration. According to the mechanism depicted on Scheme 8, the allyl unit reacted at γ-position, taking place the addition to the Si face of the imines with RS configuration. The bromoallylated product 24 was obtained as a mixture
  • took place to the Re face of imines with (Z,SS)-configuration (Scheme 27). The cycloaddition of chiral sulfinyl imines (RS)-14 with 2-(trimethysilylmethyl)allyl acetate (91) could also be promoted by Pd(0) to give methylenepyrrolidines 92. The group of Stockman demonstrated that Pd(PPh3)4 was the best
PDF
Album
Review
Published 12 May 2021

Prins cyclization-mediated stereoselective synthesis of tetrahydropyrans and dihydropyrans: an inspection of twenty years

  • Asha Budakoti,
  • Pradip Kumar Mondal,
  • Prachi Verma and
  • Jagadish Khamrai

Beilstein J. Org. Chem. 2021, 17, 932–963, doi:10.3762/bjoc.17.77

Graphical Abstract
  • ][33]. The racemization occurs during allyl transfer as a result of 2-oxonia-Cope rearrangement through a 3,3-sigmatropic shift, which plays a crucial role during the reaction, as shown in Scheme 7. The Prins cyclization between alcohol (R)-35 and aldehyde 36 was investigated under different Lewis acid
  • variety of the Prins-cyclized products. The allyl metalation, followed by intramolecular Sakurai cyclization (IMSC) provides an efficient route to a variety of tetrahydropyran derivatives, as described by Marko and Leroy [68][69]. In these approaches, an initial ene reaction between an aldehyde 139 and
  • Scheme 49. Unlike allyl- and vinylsilanes, as discussed earlier, Furman and co-workers introduced a new concept of synthesizing 211 utilizing silyl-Prins cyclization of propargylsilane 209 and aldehyde 210 in the presence of TMSOTf [93]. The oxocarbenium ion was intramolecularly trapped by the olefin
PDF
Album
Review
Published 29 Apr 2021

Manganese/bipyridine-catalyzed non-directed C(sp3)–H bromination using NBS and TMSN3

  • Kumar Sneh,
  • Takeru Torigoe and
  • Yoichiro Kuninobu

Beilstein J. Org. Chem. 2021, 17, 885–890, doi:10.3762/bjoc.17.74

Graphical Abstract
  • gram scale. The introduced bromine atom can be converted into fluorine and allyl groups. Keywords: bromination; C–H transformation; hydrogen abstraction; manganese; radical; Introduction Organic halides are versatile precursors for various synthetic protocols and are frequently used to introduce a
  • functionalized upon the introduction of other functional groups, such as fluorine and allyl groups. We hope that this C(sp3)–H bromination reaction will become a useful method to synthesize organic compounds with bromine atom(s). Several examples of C(sp3)–H halogenation. Substrate scope. a80 °C. b45 min. c4 h
PDF
Album
Supp Info
Letter
Published 22 Apr 2021

α,γ-Dioxygenated amides via tandem Brook rearrangement/radical oxygenation reactions and their application to syntheses of γ-lactams

  • Mikhail K. Klychnikov,
  • Radek Pohl,
  • Ivana Císařová and
  • Ullrich Jahn

Beilstein J. Org. Chem. 2021, 17, 688–704, doi:10.3762/bjoc.17.58

Graphical Abstract
  • step [55]. Radical 5-exo or 5-endo cyclizations of substituted N-allyl or N-vinyl α-halo amides VIII [56][57][58][59][60][61] or X [62][63][64][65][66] using atom transfer and other chain reactions, as well as non-chain methods [67][68][69][70][71][72][73] have been used to approach diverse γ-lactam
  • simplified by further useful reaction steps. Results Tandem nucleophilic substitution/Brook rearrangement/radical α-oxygenation reactions The N-allylic α-(trimethylsilyl)acetamides 8a–m were efficiently prepared by a two-step sequence. First, N-allyl acetamides 11a–m were synthesized by N-acetylation of the
  • furnished the dioxygenated amide 9l with a 7:1 anti/syn diastereoselectivity for the radical coupling (Table 2, entry 13). When the reaction was quenched after completion of the Brook rearrangement, N-allyl-N-propyl-2-(2-((trimethylsilyl)oxy)cyclohexyl)acetamide was obtained as a single diastereomer because
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2021

Valorisation of plastic waste via metal-catalysed depolymerisation

  • Francesca Liguori,
  • Carmen Moreno-Marrodán and
  • Pierluigi Barbaro

Beilstein J. Org. Chem. 2021, 17, 589–621, doi:10.3762/bjoc.17.53

Graphical Abstract
  • catalysts in the form of ionic liquids (ILs) [209]. Advantages of metallated ILs include low flammability, high thermal stability and versatility. However, their “greenness” and toxicity are still debated [225][226]. Thus, amim[ZnCl3] (amin = 1-allyl-3-methylimidazolium, Table 4, entry 1) [227] and amim
PDF
Album
Review
Published 02 Mar 2021

Breakdown of 3-(allylsulfonio)propanoates in bacteria from the Roseobacter group yields garlic oil constituents

  • Anuj Kumar Chhalodia and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2021, 17, 569–580, doi:10.3762/bjoc.17.51

Graphical Abstract
  • sativum; allyl sulfides; 3-(dimethylsulfonio)propanoate; Roseobacter; volatiles; Introduction The name of the allyl group has been introduced by Wertheim in 1844 when he investigated the constituents of garlic oil and derives from the botanical name of garlic (Allium sativum) [1]. During that time, the
  • structures of the garlic oil constituents and also of the allyl group remained unknown, but its formula was correctly assigned as C3H5. Five decades later, Semmler reported on the nature of allyl propyl disulfide (1), diallyl disulfide (2), diallyl trisulfide (3), and diallyl tetrasulfide (4) from garlic oil
  • from 9, followed by a series of proposed spontaneous reactions [5][8]. Through these transformations, acid 10 can undergo a dimerization with elimination of water to allicin (5). The hydrolysis of 5 results in allylsulfinic acid (12) and allyl thiol (13), the latter of which can react with another
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2021

Metal-free visible-light-enabled vicinal trifluoromethyl dithiolation of unactivated alkenes

  • Xiaojuan Li,
  • Qiang Zhang,
  • Weigang Zhang,
  • Jinzhu Ma,
  • Yi Wang and
  • Yi Pan

Beilstein J. Org. Chem. 2021, 17, 551–557, doi:10.3762/bjoc.17.49

Graphical Abstract
  • of blue LEDs, allyl boronate 1a (0.1 mmol), disulfide 2a (1.0 equiv) and N-(trifluoromethylthio)phthalimide (Phth-SCF3, 3, 1.5 equiv), the desired trifluoromethylthiolated product 4a was obtained in 71% yield with 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN, 2 mol %) as the
PDF
Album
Supp Info
Full Research Paper
Published 24 Feb 2021

Synthetic strategies of phosphonodepsipeptides

  • Jiaxi Xu

Beilstein J. Org. Chem. 2021, 17, 461–484, doi:10.3762/bjoc.17.41

Graphical Abstract
  • shown in Scheme 11. First, dibenzyl allylphosphonate (65) was converted to benzyl allylphosphonochloridate (66), which was then coupled with benzyl 2-azido-3-hydroxy-2-methylpropanoate (67) producing benzyl [allyl(benzyloxy)phosphoryl)oxy]propanoate (68). After the dihydroxylation with osmium tetroxide
PDF
Album
Review
Published 16 Feb 2021
Other Beilstein-Institut Open Science Activities