Search results

Search for "hydrogen bonds" in Full Text gives 438 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Synthesis of nonracemic hydroxyglutamic acids

  • Dorota G. Piotrowska,
  • Iwona E. Głowacka,
  • Andrzej E. Wróblewski and
  • Liwia Lubowiecka

Beilstein J. Org. Chem. 2019, 15, 236–255, doi:10.3762/bjoc.15.22

Graphical Abstract
  • groups capable for the formation of additional hydrogen bonds, both as donors and acceptors. The majority of synthetic strategies starts from natural products and relies on application of chirons having the required configuration at the carbon atom bonded to nitrogen (e.g., serine, glutamic and
  • additional substituents, tuning the conformational flexibility of analogues and introducing groups capable of hydrogen bonding. Crystallographic data obtained for glutamate receptors [13][14][15] showed complex set of atoms interacting electrostatically and through hydrogen bonds and the conclusions from
PDF
Album
Review
Published 25 Jan 2019

Silanediol versus chlorosilanol: hydrolyses and hydrogen-bonding catalyses with fenchole-based silanes

  • Falco Fox,
  • Jörg M. Neudörfl and
  • Bernd Goldfuss

Beilstein J. Org. Chem. 2019, 15, 167–186, doi:10.3762/bjoc.15.17

Graphical Abstract
  • kcal mol−1) and BIFOXSiCl(OH) (8) to BIFOXSi(OH)2 (9, Ea = 31.4 kcal mol−1) with high activation barriers, enforced by endo fenchone units. Crystal structure analyses of silanediol 9 with acetone show shorter hydrogen bonds between the Si–OH groups and the oxygen of the bound acetone (OH···O 1.88(3
  • % ee), reaction of 1-chloroisochroman (18) and silyl ketene acetals 11 (up to 85% yield and 5% ee), reaction of chromen-4-one (20) and silyl ketene acetals 11 (up to 98% yield and 4% ee). Keywords: hydrogen bonds; hydrolysis; ion pairs; organocatalysis; silanediol; Introduction Silanediols are
  • alcohol group for single hydrogen bonds (CH3OH (11.88 kcal mol−1) vs SiH3OH (16.43 kcal mol−1), Table 4, entries 1 and 2), which is more acidic and inconsistent with the results of West et al. [73]. In case of double hydrogen bonds in the glyoxal based system, both are equally strong, because of a third
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2019

Ammonium-tagged ruthenium-based catalysts for olefin metathesis in aqueous media under ultrasound and microwave irradiation

  • Łukasz Gułajski,
  • Andrzej Tracz,
  • Katarzyna Urbaniak,
  • Stefan J. Czarnocki,
  • Michał Bieniek and
  • Tomasz K. Olszewski

Beilstein J. Org. Chem. 2019, 15, 160–166, doi:10.3762/bjoc.15.16

Graphical Abstract
  • surface area involved or on the electrostatic nature of the surface itself [81]. Additionally, the packing density of supramolecular clusters of water created by strong intermolecular hydrogen bonds may also play a key role. Indeed, various effects may be depending on the solubility of the reactants in
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2019

Computational characterization of enzyme-bound thiamin diphosphate reveals a surprisingly stable tricyclic state: implications for catalysis

  • Ferran Planas,
  • Michael J. McLeish and
  • Fahmi Himo

Beilstein J. Org. Chem. 2019, 15, 145–159, doi:10.3762/bjoc.15.15

Graphical Abstract
  • the crystallographic water in model C, the presence of the substrate pushes the thiazolium ring somewhat towards the interior of the cavity. In all ThDP states the carboxylate of BF forms hydrogen bonds to the side chain hydroxy group and the backbone NH of Ser26, and to the Nε of His281 (Figure 5
  • a source of additional interactions. In the AP and APH+ states, the hydroxy group forms hydrogen bonds with His70 and the exocyclic NH2. Support was lent to the validity of model E when superposition of the structure of the APH+ form on the structure of BFDC:(R)-mandelate complex (PDB 1MCZ) showed
PDF
Album
Supp Info
Full Research Paper
Published 16 Jan 2019

Adhesion, forces and the stability of interfaces

  • Robin Guttmann,
  • Johannes Hoja,
  • Christoph Lechner,
  • Reinhard J. Maurer and
  • Alexander F. Sax

Beilstein J. Org. Chem. 2019, 15, 106–129, doi:10.3762/bjoc.15.12

Graphical Abstract
PDF
Album
Full Research Paper
Published 11 Jan 2019

Synthesis, biophysical properties, and RNase H activity of 6’-difluoro[4.3.0]bicyclo-DNA

  • Sibylle Frei,
  • Adam K. Katolik and
  • Christian J. Leumann

Beilstein J. Org. Chem. 2019, 15, 79–88, doi:10.3762/bjoc.15.9

Graphical Abstract
  • . The reason for the stabilization is an increased strength of the Watson–Crick base pairing and base stacking interactions due to the electronic effects of the axially oriented 2’-fluorine atom [11][12]. Additionally, FC–H···O hydrogen bonds between the 2’-fluorine and the 4’-oxygen or 5’-oxygen of the
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

1,8-Bis(dimethylamino)naphthyl-2-ketimines: Inside vs outside protonation

  • A. S. Antonov,
  • A. F. Pozharskii,
  • P. M. Tolstoy,
  • A. Filarowski and
  • O. V. Khoroshilova

Beilstein J. Org. Chem. 2018, 14, 2940–2948, doi:10.3762/bjoc.14.273

Graphical Abstract
  • function are additionally stabilised by hydrogen bonds with solvent molecules and thus the amount of b’ forms correlates with the proton accepting ability of the medium [11]. The gas phase calculations show that without any additional interaction with the medium, the forms protonated at the imino group are
PDF
Album
Supp Info
Full Research Paper
Published 28 Nov 2018

Green synthesis of new chiral 1-(arylamino)imidazo[2,1-a]isoindole-2,5-diones from the corresponding α-amino acid arylhydrazides in aqueous medium

  • Nadia Bouzayani,
  • Jamil Kraїem,
  • Sylvain Marque,
  • Yakdhane Kacem,
  • Abel Carlin-Sinclair,
  • Jérôme Marrot and
  • Béchir Ben Hassine

Beilstein J. Org. Chem. 2018, 14, 2923–2930, doi:10.3762/bjoc.14.271

Graphical Abstract
  • observed with a total trans-diastereoselectivity controlled by intramolecular hydrogen bonds. Chemical structures of analogues. NOEs correlation showing the stereochemistry of the compound 5a. X-ray crystal structure of 5f shown at the 30% probability level. Strategy for the formation of 1-(arylamino)-1H
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2018

Olefin metathesis catalysts embedded in β-barrel proteins: creating artificial metalloproteins for olefin metathesis

  • Daniel F. Sauer,
  • Johannes Schiffels,
  • Takashi Hayashi,
  • Ulrich Schwaneberg and
  • Jun Okuda

Beilstein J. Org. Chem. 2018, 14, 2861–2871, doi:10.3762/bjoc.14.265

Graphical Abstract
  • are generally regarded to be more rigid than disordered or α-helix structures [30][31]. β-Barrels are structural motifs found in numerous proteins in which (mostly) antiparallel β-strands twist and coil to form closed, quasi-cylindrical structures held together by a network of hydrogen bonds [32
PDF
Album
Review
Published 19 Nov 2018
Graphical Abstract
  • substance and chlorosulfonic acid for the first time. The authors proposed that the high Brønsted acidity of the catalyst arises mainly from hydrogen bonds between the two -SO3H groups. The catalyst 53 was studied by different analyses including FTIR, 1H NMR, 13C NMR, UV–vis, and fluorescence spectra. Then
PDF
Album
Review
Published 01 Nov 2018

Pathoblockers or antivirulence drugs as a new option for the treatment of bacterial infections

  • Matthew B. Calvert,
  • Varsha R. Jumde and
  • Alexander Titz

Beilstein J. Org. Chem. 2018, 14, 2607–2617, doi:10.3762/bjoc.14.239

Graphical Abstract
  • interact with the tyrosine gate formed by Tyr48 and Tyr137 [15][16], as well as form hydrogen bonds and electrostatic interactions with the Arg98/Glu50 salt bridge of the protein. Taking this coordination geometry into consideration for further ligand optimization, it was found important to focus on the
PDF
Album
Review
Published 11 Oct 2018

Nucleoside macrocycles formed by intramolecular click reaction: efficient cyclization of pyrimidine nucleosides decorated with 5'-azido residues and 5-octadiynyl side chains

  • Jiang Liu,
  • Peter Leonard,
  • Sebastian L. Müller,
  • Constantin Daniliuc and
  • Frank Seela

Beilstein J. Org. Chem. 2018, 14, 2404–2410, doi:10.3762/bjoc.14.217

Graphical Abstract
  • -dimensional network consisting of a linear unit connected by hydrogen bonds between N3–H and the triazole N3’’ of a second molecule (Figure 3, Supporting Information File 1, Figures S3 and S4). Additionally, the molecules are bridged by water molecules connecting O2 of the base moiety and N2’’ of the triazole
  • ring with 3’-OH of the next unit. The second layer is twisted by ≈54° to the first layer and both layers are hold together by weak hydrogen bonds between O4 and methylene groups C9 and C11. In a particular layer the triazole rings are stacked. The same is true for the base moieties. For comparison, the
  • ellipsoids are drawn at the 50% probability level and H-atoms are shown as small spheres of arbitrary size. Hydrogen bonds are shown as dashed lines. The crystal packing of 8 shows the intramolecular hydrogen-bonding network (projection parallel to the x-axis). N- and S-conformation for cyclonucleoside 8. B
PDF
Album
Supp Info
Letter
Published 13 Sep 2018

Non-metal-templated approaches to bis(borane) derivatives of macrocyclic dibridgehead diphosphines via alkene metathesis

  • Tobias Fiedler,
  • Michał Barbasiewicz,
  • Michael Stollenz and
  • John A. Gladysz

Beilstein J. Org. Chem. 2018, 14, 2354–2365, doi:10.3762/bjoc.14.211

Graphical Abstract
  • (12) in 94% yield using triphosgene, a standard reagent for the chlorination of phosphorus–hydrogen bonds [49]. Since a direct reaction with an excess of the Grignard reagent BrMg(CH2)6CH=CH2 would give 11, a dead end, initial conversion to the bis(borane) adduct 12·2BH3 was envisioned. However
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2018

Catalyst-free synthesis of 4-acyl-NH-1,2,3-triazoles by water-mediated cycloaddition reactions of enaminones and tosyl azide

  • Lu Yang,
  • Yuwei Wu,
  • Yiming Yang,
  • Chengping Wen and
  • Jie-Ping Wan

Beilstein J. Org. Chem. 2018, 14, 2348–2353, doi:10.3762/bjoc.14.210

Graphical Abstract
  • -triazoline 4 which couples to water by strong hydrogen bond effect [51]. The presence of the hydrogen bonds may promote the elimination of the amino group and the acidic C–H bond at the α-position of the acyl group, which affords N-tosyl-1,2,3-triazole 5. Under the present reaction conditions, the
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2018

Selective formation of a zwitterion adduct and bicarbonate salt in the efficient CO2 fixation by N-benzyl cyclic guanidine under dry and wet conditions

  • Yoshiaki Yoshida,
  • Naoto Aoyagi and
  • Takeshi Endo

Beilstein J. Org. Chem. 2018, 14, 2204–2211, doi:10.3762/bjoc.14.194

Graphical Abstract
  • loss exhibited rapid and slow weight loss behaviors around 127 °C and until 162 °C (ii), respectively. Finally, the thermal decomposition of 3 has occurred completely around 260 °C (iii). This three-steps behavior of weight loss suggested that the dimer of 3 was constructed by the two hydrogen bonds
  • the dimer of 3. Accordingly, the intermediate complex of 3 and 1 was constructed by the two hydrogen bonds between OH−N and O−HN in the bicarbonate salt 3 and the free guanidine 1, and then another one pair of CO2 and H2O was almost released from the intermediate complex (3+1 dimer) around 127 °C in
  • . Especially, the results of the thermal analysis revealed that the obtained zwitterion adduct and bicarbonate salt stabilized the dimer complexes based on multiple intermolecular hydrogen bonds. This also indicated that the zwitterion adduct, bicarbonate salt, and their dimers were a fairly stable structure
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2018

Synthesis and post-functionalization of alternate-linked-meta-para-[2n.1n]thiacyclophanes

  • Wout De Leger,
  • Koen Adriaensen,
  • Koen Robeyns,
  • Luc Van Meervelt,
  • Joice Thomas,
  • Björn Meijers,
  • Mario Smet and
  • Wim Dehaen

Beilstein J. Org. Chem. 2018, 14, 2190–2197, doi:10.3762/bjoc.14.192

Graphical Abstract
  • Figure 1). The conformation in the solid state is stabilised by intramolecular O–H···S hydrogen bonds (O···S distances 3.2081 (16) and 3.4179 (17) Å) and shows no central void. The formation of the [3 + 3] product is favoured by stronger bases and shorter reaction times. Therefore, in entry 8 of Table 1
  • -thiacyclophane 6: (a) ball-and-stick representation, with O–H···S hydrogen bonds shown as green dashed lines, (b) space-filling representation viewed along the pseudo twofold axis. Macrocyclization towards homothiacalixarenes 3a and 3b [12]. Cyclocondensation reaction of 4 and 5 towards [2 + 2] and [3 + 3
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2018

Tetrathiafulvalene – a redox-switchable building block to control motion in mechanically interlocked molecules

  • Hendrik V. Schröder and
  • Christoph A. Schalley

Beilstein J. Org. Chem. 2018, 14, 2163–2185, doi:10.3762/bjoc.14.190

Graphical Abstract
  • TTFs. However, also the type of substituent on the TTF moiety plays a role in terms of weak secondary binding interactions such as hydrogen bonds [63]. For example TTF 5 which is substituted by ethylene glycol chains displays a high association constant of Ka = 50,000 M−1 in acetonitrile. Additionally
  • station by hydrogen bonds as shown by the high association constant of a structurally similar pseudorotaxane precursor (Ka = 590,000 M−1). The high association constant is a result of the weakly coordinating anion (WCA) used, i.e., tetrakis(3,5-bis(trifluoromethyl)phenyl)borate. Comparison to a
PDF
Album
Review
Published 20 Aug 2018

Synthesis and supramolecular self-assembly of glutamic acid-based squaramides

  • Juan V. Alegre-Requena,
  • Marleen Häring,
  • Isaac G. Sonsona,
  • Alex Abramov,
  • Eugenia Marqués-López,
  • Raquel P. Herrera and
  • David Díaz Díaz

Beilstein J. Org. Chem. 2018, 14, 2065–2073, doi:10.3762/bjoc.14.180

Graphical Abstract
  • of a self-assembled network in organic solvents is likely driven by the formation of hydrogen bonds between different gelator molecules (polar head) as well as hydrophobic interactions between the long aliphatic chains. Considering our previous results obtained with diacids 1 and 2 [33], we initially
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2018

Asymmetric Michael addition reactions catalyzed by calix[4]thiourea cyclohexanediamine derivatives

  • Zheng-Yi Li,
  • Hong-Xiao Tong,
  • Yuan Chen,
  • Hong-Kui Su,
  • Tangxin Xiao,
  • Xiao-Qiang Sun and
  • Leyong Wang

Beilstein J. Org. Chem. 2018, 14, 1901–1907, doi:10.3762/bjoc.14.164

Graphical Abstract
  • in forming hydrogen bonds with substrates. This may lead to activated forms of the substrates allowing the corresponding reaction to occur [9][10][11]. For example, Jacobsen and co-workers pioneered an effective chiral thiourea catalyst which was employed in an asymmetric Strecker reaction [12][13
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2018

A hemicryptophane with a triple-stranded helical structure

  • Augustin Long,
  • Olivier Perraud,
  • Erwann Jeanneau,
  • Christophe Aronica,
  • Jean-Pierre Dutasta and
  • Alexandre Martinez

Beilstein J. Org. Chem. 2018, 14, 1885–1889, doi:10.3762/bjoc.14.162

Graphical Abstract
  • helical arrangement of the linkers stabilized by intramolecular hydrogen bonds between amide and amine groups. The chirality of the cyclotriveratrylene unit controls the propeller arrangement of the three aromatic rings in the opposite part of the cage. 1H NMR studies suggest that this structure is
  • parallel peptide chains coil about each other in a triple stranded left-handed helical structure. Its high thermal and mechanical stability results mainly from the numerous hydrogen bonds found in the triple helix framework [2]. Bioinspired structures, based on peptide backbones, have been built, allowing
  • three imine functions is highly sable [12][13]. Hydrogen bonds between the amide group and the formed imine function could account for the high stability of this intermediate, shifting the equilibrium between the different oligomers and the cage in favor of this latter (vide infra). 1H NMR of cage 1 The
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2018

Preparation and X-ray structure of 2-iodoxybenzenesulfonic acid (IBS) – a powerful hypervalent iodine(V) oxidant

  • Irina A. Mironova,
  • Pavel S. Postnikov,
  • Rosa Y. Yusubova,
  • Akira Yoshimura,
  • Thomas Wirth,
  • Viktor V. Zhdankin,
  • Victor N. Nemykin and
  • Mekhman S. Yusubov

Beilstein J. Org. Chem. 2018, 14, 1854–1858, doi:10.3762/bjoc.14.159

Graphical Abstract
  • . In addition, a water molecule was observed in the crystal structure of 6, which forms two strong hydrogen bonds (≈2.05 Å for O(21)–H(2)···O(11) and ≈2.07 Å for O(21)–H(3)···O(5)) with neighbouring oxygen atoms and two short donor–acceptor interactions with K(1) and K(2) potassium ions. Overall, the
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2018

Strong binding and fluorescence sensing of bisphosphonates by guanidinium-modified calix[5]arene

  • Jie Gao,
  • Zhe Zheng,
  • Lin Shi,
  • Si-Qi Wu,
  • Hongwei Sun and
  • Dong-Sheng Guo

Beilstein J. Org. Chem. 2018, 14, 1840–1845, doi:10.3762/bjoc.14.157

Graphical Abstract
  • was tested as binding receptor. GC5A was prepared according to our previous procedure [26] and the guanidinium groups installed in the upper rim are expected to form multiple salt bridge interactions (charge-assisted hydrogen bonds) with the phosphate groups of BPs (Scheme 1c) [26][29]. To execute IDA
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2018

Host–guest complexes of conformationally flexible C-hexyl-2-bromoresorcinarene and aromatic N-oxides: solid-state, solution and computational studies

  • Rakesh Puttreddy,
  • Ngong Kodiah Beyeh,
  • S. Maryamdokht Taimoory,
  • Daniel Meister,
  • John F. Trant and
  • Kari Rissanen

Beilstein J. Org. Chem. 2018, 14, 1723–1733, doi:10.3762/bjoc.14.146

Graphical Abstract
  • intramolecular O···H–O hydrogen bonds (HBs) [1][2]. The combination of their confined cavity and conformational flexibility has driven the interest in these synthetic receptors [3], a subclass of calixarenes [4], for a wide range of applications in fields such as catalysis [5][6][7][8][9], sensors [10][11
  • property usually preferred by resorcinarenes when solvate and guest molecules are absent inside the cavity. Note that the self-inclusion complex of BrC6 has exo methanol solvent hydrogen bonds to host hydroxy groups. This can possibly be explained by the longer lower-rim hexyl chains providing enough
PDF
Album
Supp Info
Full Research Paper
Published 10 Jul 2018

Design, synthesis and structure of novel G-2 melamine-based dendrimers incorporating 4-(n-octyloxy)aniline as a peripheral unit

  • Cristina Morar,
  • Pedro Lameiras,
  • Attila Bende,
  • Gabriel Katona,
  • Emese Gál and
  • Mircea Darabantu

Beilstein J. Org. Chem. 2018, 14, 1704–1722, doi:10.3762/bjoc.14.145

Graphical Abstract
  • strong hydrogen bond acceptor solvents, such as DMSO-d6 [45], then the NH groups are exposed to the solvent rather than developing intramolecular hydrogen bonds. Conversely, a TG value less negative than −4 ppb K−1 discloses the NH group preference towards intramolecular hydrogen bonds formation, at room
PDF
Album
Supp Info
Full Research Paper
Published 09 Jul 2018

The phenyl vinyl ether–methanol complex: a model system for quantum chemistry benchmarking

  • Dominic Bernhard,
  • Fabian Dietrich,
  • Mariyam Fatima,
  • Cristóbal Pérez,
  • Hannes C. Gottschalk,
  • Axel Wuttke,
  • Ricardo A. Mata,
  • Martin A. Suhm,
  • Melanie Schnell and
  • Markus Gerhards

Beilstein J. Org. Chem. 2018, 14, 1642–1654, doi:10.3762/bjoc.14.140

Graphical Abstract
  • hydrogen bonds; Introduction The balance of different noncovalent interactions is crucial for chemical and biochemical processes as it controls molecular recognition and aggregation [1][2][3][4][5][6]. In order to gain a deeper understanding of these processes, knowledge on exact structural arrangements
  • the size of the attached alcohol. Torsional balances in solution have been used to probe aromatic OH∙∙∙π interactions and to show that these interactions remain important at room temperature [23]. In such aromatic solute–solvent systems, one frequently encounters hydrogen bonds formed towards oxygen
  • . Observing the intermolecular contacts, which may or may not be designated as weak hydrogen bonds but are expected to stabilize the complexes, the main difference between the two structures is a phenyl vs ethenyl CH to methanol O contact (cf. dashed gray lines in Figure 1). Both are separated by only a few
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2018
Other Beilstein-Institut Open Science Activities