Search results

Search for "copper" in Full Text gives 778 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Iron-catalyzed domino coupling reactions of π-systems

  • Austin Pounder and
  • William Tam

Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196

Graphical Abstract
  • forming CHCl2 radicals [130]. In 2019, the Bao group demonstrated alkyl iodides 20 were suitable radical precursors for the carboazidation reaction (Scheme 32) [131]. Additionally, the authors demonstrated the carboazidation of alkynes 160, a challenging reaction which has only had success under copper
PDF
Album
Review
Published 07 Dec 2021

Electrocatalytic C(sp3)–H/C(sp)–H cross-coupling in continuous flow through TEMPO/copper relay catalysis

  • Bin Guo and
  • Hai-Chao Xu

Beilstein J. Org. Chem. 2021, 17, 2650–2656, doi:10.3762/bjoc.17.178

Graphical Abstract
  • terminal alkynes has been achieved in a continuous-flow microreactor through 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)/copper relay catalysis. The reaction is easily scalable and requires low concentration of supporting electrolyte and no external chemical oxidants or ligands, providing straightforward
  • and sustainable access to 2-functionalized tetrahydroisoquinolines. Keywords: continuous flow; copper; catalysis; dehydrogenative cross-coupling; electrochemistry; Introduction The dehydrogenative cross-coupling of two C–H bonds represents an ideal strategy for the construction of C–C bonds [1][2
  • the oxidation of the tetrahydroisoquinoline to an iminium intermediate with various chemical oxidants such as peroxides and DDQ followed by reaction with the copper acetylide species to deliver the 2-substituted tetrahydroisoquinoline product (Scheme 1A). These methods usually require elevated
PDF
Album
Supp Info
Letter
Published 28 Oct 2021

α-Ketol and α-iminol rearrangements in synthetic organic and biosynthetic reactions

  • Scott Benz and
  • Andrew S. Murkin

Beilstein J. Org. Chem. 2021, 17, 2570–2584, doi:10.3762/bjoc.17.172

Graphical Abstract
  • conversion of 3 into the cyclohexanone product 4 (Figure 2) [4]. The best results were obtained with 2-[4-(S)-tert-butyloxazolin-2-yl]pyridine ((S)-5), which gave >90% yield of (S)-4 in 46% ee. In a similar investigation except with copper(II) as the metal and β-hydroxy-α-diketone 6 as the substrate, the
  • rearrangement. Nickel(II)-catalyzed enantioselective rearrangement of ketol 3 to form the ring-expanded and chiral product 4. Enantioselective ring expansion of β-hydroxy-α-dicarbonyl 6 catalyzed by a chiral copper-bisoxazoline complex. Enantioselective rearrangement of ketols 9 and 12 and hydroxyaldimine 14
PDF
Album
Review
Published 15 Oct 2021

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • renewable energy and green chemistry for many years. Ruthenium and iridium, which can be used as photoredox catalysts, are expensive and scarce in nature. Thus, the further development of catalysts based on these transition metals is discouraged. Alternative photocatalysts based on copper complexes are
  • widely investigated, because they are abundant and less expensive. This review discusses the scope and application of photoinduced copper-based catalysis along with recent progress in this field. The special features and mechanisms of copper photocatalysis and highlights of the applications of the copper
  • complexes to photocatalysis are reported. Copper-photocatalyzed reactions, including alkene and alkyne functionalization, organic halide functionalization, and alkyl C–H functionalization that have been reported over the past 5 years, are included. Keywords: copper-photocatalyzed reactions; green chemistry
PDF
Album
Review
Published 12 Oct 2021

Copper-catalyzed monoselective C–H amination of ferrocenes with alkylamines

  • Zhen-Sheng Jia,
  • Qiang Yue,
  • Ya Li,
  • Xue-Tao Xu,
  • Kun Zhang and
  • Bing-Feng Shi

Beilstein J. Org. Chem. 2021, 17, 2488–2495, doi:10.3762/bjoc.17.165

Graphical Abstract
  • , Zhengzhou University, Zhengzhou, 450001, China School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, He’nan, 453007, China 10.3762/bjoc.17.165 Abstract A copper-catalyzed mono-selective C–H amination of ferrocenes assisted by 8-aminoquinoline is presented here. A range of amines
  • the directing group could be removed easily under basic conditions. Keywords: amination; C–H activation; copper; ferrocene; mono-selectivity; Introduction Ferrocene-based compounds have broad applications from asymmetric catalysis to medicinal discovery [1][2][3][4][5][6][7][8]. Therefore, the
  • excellent mono-selectivity and no diaminated ferrocenylamide was detected. The exclusive monoselectivity is most likely originated from the strong coordination of the amino group, which could form a tridentate copper complex and prevent the second C–H amination [34][50]. Having obtained the optimized
PDF
Album
Supp Info
Letter
Published 28 Sep 2021

Exfoliated black phosphorous-mediated CuAAC chemistry for organic and macromolecular synthesis under white LED and near-IR irradiation

  • Azra Kocaarslan,
  • Zafer Eroglu,
  • Önder Metin and
  • Yusuf Yagci

Beilstein J. Org. Chem. 2021, 17, 2477–2487, doi:10.3762/bjoc.17.164

Graphical Abstract
  • , Turkey King Abdulaziz University, Faculty of Science, Chemistry Department, 21589 Jeddah, Saudi Arabia 10.3762/bjoc.17.164 Abstract The development of long-wavelength photoinduced copper-catalyzed azide–alkyne click (CuAAC) reaction routes is attractive for organic and polymer chemistry. In this study
  • [40]. BPNs were tested as NIR photoinitiator for the CuAAC reactions of low molar mass compounds and polymers possessing antagonist azide and alkyne functionalities (Figure 1). The optical absorption spectra of BPNs, copper(I) chloride (CuICl, 0.05 mmol) and copper(II) chloride (CuIICl2, 0.05 mmol
  • phenylacetylene (Alk-3) in the presence of copper(II) chloride/ N,N,N’,N’,N’’-pentamethyldiethylenetriamine (CuIICl2/PMDETA) and exfoliated BPNs under the white LED irradiation was performed (Figure 3). The reaction was followed by 1H NMR spectroscopy during the click process. The decrease of the acetylene proton
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2021

Recent advances in the tandem annulation of 1,3-enynes to functionalized pyridine and pyrrole derivatives

  • Yi Liu,
  • Puying Luo,
  • Yang Fu,
  • Tianxin Hao,
  • Xuan Liu,
  • Qiuping Ding and
  • Yiyuan Peng

Beilstein J. Org. Chem. 2021, 17, 2462–2476, doi:10.3762/bjoc.17.163

Graphical Abstract
  • annulation. Recently, there have been several elegant reviews covering the 1,3-enynes chemistry [46][47][48]. For instance, Procter and co-workers reviewed the copper-catalyzed functionalization of enynes [46]. In 2020, the Wang group reviewed the development of 2-activated 1,3-enyne in enantioselective
  • . Normally, (E)-2-en-4-yn-1-azides 1 with electron-rich substituent groups favorably give the 5-iodopyridine 3, while for substrates containing electron-poor groups, the 2-acylpyrrole 4 is favored (Scheme 3). Then, the Reddy group developed a copper-catalyzed aminative aza-annulation of enynyl azides with N
  • synthesis of selenyl- and sulfenylpyridines has attracted considerable attention. In 2019, the Reddy group reported a copper-catalyzed aza-annulation of enynyl azides 1 for the synthesis of 5-selenyl- and sulfenylpyridine derivatives 18 and 19 (Scheme 7) [51]. Diorganyl dichalcogenides (R1XXR1, X = Se, S
PDF
Album
Review
Published 22 Sep 2021

Synthesis and antimicrobial activity of 1H-1,2,3-triazole and carboxylate analogues of metronidazole

  • Satya Kumar Avula,
  • Syed Raza Shah,
  • Khdija Al-Hosni,
  • Muhammad U. Anwar,
  • Rene Csuk,
  • Biswanath Das and
  • Ahmed Al-Harrasi

Beilstein J. Org. Chem. 2021, 17, 2377–2384, doi:10.3762/bjoc.17.154

Graphical Abstract
  • materials, dyes, agrochemicals, photostabilizers, and corrosion inhibitors (copper alloys) [6]. Incorporation of the 1H-1,2,3-triazole moiety is well known to impact on the physical, chemical and biological potential properties of organic molecules. Due to this reason, many efforts have been exerted to
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2021

A visible-light-induced, metal-free bis-arylation of 2,5-dichlorobenzoquinone

  • Pieterjan Winant and
  • Wim Dehaen

Beilstein J. Org. Chem. 2021, 17, 2315–2320, doi:10.3762/bjoc.17.149

Graphical Abstract
  • , aryldiazonium salts have long played an essential role as radical precursors [20]. Their use in CH-arylation reactions of olefins, catalyzed by copper salts, was first published by Meerwein in 1939 [21]. Recently, we published a Meerwein arylation/cyclization sequence to benzofuropyridine derivatives in this
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2021

(Phenylamino)pyrimidine-1,2,3-triazole derivatives as analogs of imatinib: searching for novel compounds against chronic myeloid leukemia

  • Luiz Claudio Ferreira Pimentel,
  • Lucas Villas Boas Hoelz,
  • Henayle Fernandes Canzian,
  • Frederico Silva Castelo Branco,
  • Andressa Paula de Oliveira,
  • Vinicius Rangel Campos,
  • Floriano Paes Silva Júnior,
  • Rafael Ferreira Dantas,
  • Jackson Antônio Lamounier Camargos Resende,
  • Anna Claudia Cunha,
  • Nubia Boechat and
  • Mônica Macedo Bastos

Beilstein J. Org. Chem. 2021, 17, 2260–2269, doi:10.3762/bjoc.17.144

Graphical Abstract
  • developed by Sharpless and collaborators, to the Huisgen cycloaddition (a 1,3-dipolar cycloaddition reaction to obtain this heterocycle) allowed the regiospecific synthesis of the 1,4-disubstituted isomers with good yields in the presence of copper(I) salts [15][16][17]. Since then, medicinal chemists used
  • cycloaddition reactions via the copper-catalyzed 1,3-dipolar cycloaddition reaction (CuAAC) of the azides 5 and 9 with suitably functionalized acetylenes 6a–j, using sodium ascorbate and copper sulfate in ACN/H2O 2:1 under microwave irradiation were carried out to obtain the 1,4-regioisomers of the final
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2021

Transition-metal-free intramolecular Friedel–Crafts reaction by alkene activation: A method for the synthesis of some novel xanthene derivatives

  • Tülay Yıldız,
  • İrem Baştaş and
  • Hatice Başpınar Küçük

Beilstein J. Org. Chem. 2021, 17, 2203–2208, doi:10.3762/bjoc.17.142

Graphical Abstract
  • , iron(III) chloride hexahydrate, trifluoroacetic acid (TFA), N-trifylphosphoramide (NTPA), benzoic acid, diphenyl phosphate (DPP), malonic acid, chloroacetic acid, copper(II) triflate, acetic acid, and p-toluenesulfonic acid (p-TSA) were used as catalysts. TFA gave the best yield of these catalysts with
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2021

Catalyzed and uncatalyzed procedures for the syntheses of isomeric covalent multi-indolyl hetero non-metallides: an account

  • Ranadeep Talukdar

Beilstein J. Org. Chem. 2021, 17, 2102–2122, doi:10.3762/bjoc.17.137

Graphical Abstract
  • ) and Yang (2016) [82][83]. Both reactions used aerial oxygen as the oxidizing agent for sulfur (Scheme 15). Shibahara utilized 20 mol % copper(I) thiophene-2-carboxylate (CuTC) as the catalyst, where heating N-methylindole (1) with elemental sulfur in DMSO as solvent at 90 °C under aerial oxygen led to
  • the desired product 101 in 49% yield [82]. Other copper catalysts such as CuCl or CuBr gave low yields, even when used with 2,2’-bipyridyl as the ligand. First, oxidation of copper(I) takes place, which interacts with elemental sulfur to “activate” it. A nucleophilic attack from N-methylindole (1) to
  • the sulfur species 102 takes place to generate copper sulfide complex 103. An oxidative homocoupling gives the bis(indol-3-yl)sulfide 101. Simultaneously, an oxidative homocoupling of the copper sulfide complex can take place to afford disulfide 104, that reacts with N-methylindole again under
PDF
Album
Review
Published 19 Aug 2021

Recent advances in the syntheses of anthracene derivatives

  • Giovanni S. Baviera and
  • Paulo M. Donate

Beilstein J. Org. Chem. 2021, 17, 2028–2050, doi:10.3762/bjoc.17.131

Graphical Abstract
  • monofunctionalized naphthyl substrates. These authors demonstrated that the rhodium-catalyzed oxidative 1:2 coupling reactions of arylboronic acids 7 with alkyne 8 occurred in the presence of a copper–air oxidant, to give the corresponding 1,2,3,4-tetrasubtituted anthracene derivatives 9a and 9b (Scheme 1) [34
PDF
Album
Review
Published 10 Aug 2021

On the application of 3d metals for C–H activation toward bioactive compounds: The key step for the synthesis of silver bullets

  • Renato L. Carvalho,
  • Amanda S. de Miranda,
  • Mateus P. Nunes,
  • Roberto S. Gomes,
  • Guilherme A. M. Jardim and
  • Eufrânio N. da Silva Júnior

Beilstein J. Org. Chem. 2021, 17, 1849–1938, doi:10.3762/bjoc.17.126

Graphical Abstract
PDF
Album
Review
Published 30 Jul 2021

Natural products in the predatory defence of the filamentous fungal pathogen Aspergillus fumigatus

  • Jana M. Boysen,
  • Nauman Saeed and
  • Falk Hillmann

Beilstein J. Org. Chem. 2021, 17, 1814–1827, doi:10.3762/bjoc.17.124

Graphical Abstract
  • to 1,8-dihydroxynaphthalene (1,8-DHN) (10) by Abr1, a multi-copper reductase. In a last step polymerization of 1,8-DHN monomers is facilitated by the laccase Abr2 [45][149][150][151][152]. Knock out mutants of either ayg1, arp2, or abr2 lead to different coloured conidia while loss of pksP aborts DHN
PDF
Album
Review
Published 28 Jul 2021

2,4-Bis(arylethynyl)-9-chloro-5,6,7,8-tetrahydroacridines: synthesis and photophysical properties

  • Najeh Tka,
  • Mohamed Adnene Hadj Ayed,
  • Mourad Ben Braiek,
  • Mahjoub Jabli,
  • Noureddine Chaaben,
  • Kamel Alimi,
  • Stefan Jopp and
  • Peter Langer

Beilstein J. Org. Chem. 2021, 17, 1629–1640, doi:10.3762/bjoc.17.115

Graphical Abstract
  • using 0.6 mol % of tetrakis(triphenylphosphine)palladium(0) and 1.2 mol % of copper iodide (Scheme 2, Table 1). The reaction proceeded chemoselectively at the two carbon–bromine bonds giving 2,4-bis(phenylethynyl)-9-chloro-5,6,7,8-tetrahydroacridine (4a). This result was not entirely predictable, as the
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2021

A recent overview on the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles

  • Pezhman Shiri,
  • Ali Mohammad Amani and
  • Thomas Mayer-Gall

Beilstein J. Org. Chem. 2021, 17, 1600–1628, doi:10.3762/bjoc.17.114

Graphical Abstract
  • 1,2,3-triazoles through multicomponent reactions and the relevant mechanistic aspects have been surveyed by Chen, Ren, et al. [27]. The 1,3-dipolar cycloaddition reaction between azides and alkynes is the most efficient pathway for the preparation of disubstituted 1,2,3-triazole derivatives. The copper
  • , altogether leading to a moderate to high yield of the products (Scheme 19) [50]. A reasonable mechanism for this cyclization/coupling reaction involves the generation of a 5-copper(I)-substituted triazolide intermediate 62, which coordinates with propargyl carbonate 59. Further insertion of the C–C triple
  • bond of an alkyne into the Cu–triazole bond gives 64, which then undergoes syn-β-oxygen elimination to provide the target product. On the other hand, an oxidative addition and reductive elimination sequence can also generate the target product (Scheme 20) [50]. An immobilized copper complex has been
PDF
Album
Review
Published 13 Jul 2021

Copper-mediated oxidative C−H/N−H activations with alkynes by removable hydrazides

  • Feng Xiong,
  • Bo Li,
  • Chenrui Yang,
  • Liang Zou,
  • Wenbo Ma,
  • Linghui Gu,
  • Ruhuai Mei and
  • Lutz Ackermann

Beilstein J. Org. Chem. 2021, 17, 1591–1599, doi:10.3762/bjoc.17.113

Graphical Abstract
  • Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany 10.3762/bjoc.17.113 Abstract The efficient copper-mediated oxidative C–H alkynylation of benzhydrazides was accomplished with terminal alkynes. Thus, a heteroaromatic removable N-2
  • : benzhydrazides; copper; 3-methyleneisoindolin-1-one; removable directing group; Introduction Inexpensive copper-promoted oxidative C−H activations [1][2][3][4][5][6][7][8][9][10][11] have been recognized as competent tools for the efficient assembly and late-stage functionalization of organic molecules due to
  • the natural abundance and versatile reactivity. Early examples of copper-promoted C−H activation of 2-arylpyridines were disclosed by Yu et al. [12] and Chatami et al. [13] independently. Inspired by these studies, various copper-induced C−H functionalizations, such as arylations, alkynylations
PDF
Album
Supp Info
Full Research Paper
Published 08 Jul 2021

Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances

  • Thiago S. Silva and
  • Fernando Coelho

Beilstein J. Org. Chem. 2021, 17, 1565–1590, doi:10.3762/bjoc.17.112

Graphical Abstract
  • adjustments from the previous conditions (Scheme 2) [25], such as conducting the reaction at a higher temperature and adding a copper salt to reoxidize possible Pd(0) species produced in the cyclization process [32]. Two compounds containing quaternary centers were synthetized in moderate yields (Scheme 4
  • radical initiator and a copper salt as an additive, the reaction between unactivated olefins and alkanes (in large excess, 50 mL/mmol) afforded anti-Markovnikov hydroalkylation products at high temperature (110 °C) (Scheme 37). Two examples of the synthesis of quaternary carbon centers were reported using
PDF
Album
Review
Published 07 Jul 2021

Double-headed nucleosides: Synthesis and applications

  • Vineet Verma,
  • Jyotirmoy Maity,
  • Vipin K. Maikhuri,
  • Ritika Sharma,
  • Himal K. Ganguly and
  • Ashok K. Prasad

Beilstein J. Org. Chem. 2021, 17, 1392–1439, doi:10.3762/bjoc.17.98

Graphical Abstract
  • -ethynylpyrene (40) under copper-catalyzed alkyne–azide cycloaddition (CuAAC) reaction conditions to yield the double-headed nucleoside 41 (Scheme 10) [23]. The double-headed nucleoside 41 was phosphitylated and then incorporated into oligonucleotides and was found to form highly stable DNA duplexes and three
  • nucleosides were further reacted with propargylated nucleobases through a copper-catalyzed azide–alkyne cycloaddition (CuAAC) reaction followed by treatment with methanolic ammonia to give the C-3′-substituted double-headed ribofuranonucleosides 46a–c and 50a–e (Scheme 11) [36]. The double-headed nucleosides
  • nucleoside 102 with phenylacetylene in the presence of sodium ascorbate and copper sulfate in a solvent mixture of t-BuOH, water and pyridine, followed by the removal of the tert-butyldimethylsilyl protecting group gave nucleoside 103 (Scheme 22) [14]. Under similar reaction conditions, the treatment of
PDF
Album
Review
Published 08 Jun 2021
Graphical Abstract
  • the bromination using Br2/CH2Cl2 and then subsequent alkylation followed by Ullmann-type copper-mediated cross-coupling reaction in overall good yield (Scheme 4). On the other hand, imidazole and benzimidazole containing C3-symmetric truxene-based molecules (14 and 16) have also been assembled from
  • the hexaalkylated tribromotruxene 5 by means of Ullmann-type reaction in the presence of copper powder using pristine imidazole (13) and benzimidazole (15), respectively (Scheme 5). Moreover, we have successfully constructed the C3-symmetric oxazole containing truxene derivative 20 along with
  • (method A). Method C: Tribromotruxene derivative 5 (400 mg, 0.43 mmol), pyrrole (12, 102.5 mg, 1.50 mmol), K2CO3 (6.5 equiv), and copper power (3.5 equiv) were dissolved in dry DMSO (10 mL) and the reaction mixture was heated at 130 °C under nitrogen atmosphere for 2 days. After completion of the reaction
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
  • understanding of the process itself [142][143][144]. Benaglia et al. exemplified 3D printing with a copper-catalysed Henry reaction [145]. Benzaldehyde (17) and the homogenous catalyst were mixed with nitroethane and the DIPEA base solution in a 1 mL polylactic acid (PLA) square-channelled microreactor. The
PDF
Album
Review
Published 18 May 2021

Synthetic accesses to biguanide compounds

  • Oleksandr Grytsai,
  • Cyril Ronco and
  • Rachid Benhida

Beilstein J. Org. Chem. 2021, 17, 1001–1040, doi:10.3762/bjoc.17.82

Graphical Abstract
  • on this feature to isolate biguanide as a copper complex. Interestingly, transition metal-biguanide complexes often present vivid colors because of a strong absorption in the visible range. Biguanides have been used in chemistry as versatile starting materials in organic synthesis, catalysts [5
  • transesterification of several vegetable oils [5]. Since the first reported copper-biguanide complex, the synthesis of a variety of stable biguanide complexes has been reported with VIV, CrIII, MnIII, MnIV, CoII, CoIII, NiII, CuII, ZnII, PdII, ReV, OsVI [8], etc. Many of these complexes found applications as
  • reagent to prepare biguanides dates back to the 1880s at the time of the first historical syntheses. During the decade following the biguanide discovery, three different techniques were investigated: a) the reaction of cyanoguanidine with an aqueous solution of an amine in the presence of copper salts [13
PDF
Album
Review
Published 05 May 2021

Manganese/bipyridine-catalyzed non-directed C(sp3)–H bromination using NBS and TMSN3

  • Kumar Sneh,
  • Takeru Torigoe and
  • Yoichiro Kuninobu

Beilstein J. Org. Chem. 2021, 17, 885–890, doi:10.3762/bjoc.17.74

Graphical Abstract
  • -position of an oxazoline or amide is selectively activated using a copper or palladium catalyst. Manganese is one of the most abundant and nontoxic transition metals found in the earth’s crust and its corresponding complexes and salts are useful in synthetic organic reactions [29][30][31][32][33][34][35
PDF
Album
Supp Info
Letter
Published 22 Apr 2021

Microwave-assisted multicomponent reactions in heterocyclic chemistry and mechanistic aspects

  • Shivani Gulati,
  • Stephy Elza John and
  • Nagula Shankaraiah

Beilstein J. Org. Chem. 2021, 17, 819–865, doi:10.3762/bjoc.17.71

Graphical Abstract
PDF
Album
Review
Published 19 Apr 2021
Other Beilstein-Institut Open Science Activities