Search results

Search for "ESI" in Full Text gives 543 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

First total synthesis of hoshinoamide A

  • Haipin Zhou,
  • Zihan Rui,
  • Yiming Yang,
  • Shengtao Xu,
  • Yutian Shao and
  • Long Liu

Beilstein J. Org. Chem. 2021, 17, 2924–2931, doi:10.3762/bjoc.17.201

Graphical Abstract
  • , 66.74, 60.75, 59.32, 36.55, 30.88, 28.45, 23.94; HRMS–ESI (m/z): [M + H]+ calcd. for C22H26N2O3, 588.2671; found, 588.2673. Fmoc-Val-N-Me-ᴅ-Phe-Val-Pro-OBn (7). To a stirred solution of dipeptide 6 (118 mg, 0.20 mmol) was added 20% Et2NH in CH3CN (5 mL) at rt for 0.5 h. The Et2NH and CH3CN were
  • , 128.20, 127.72, 127.08, 126.65, 125.17, 125.08, 119.99, 67.04, 66.84, 59.43, 55.87, 55.59, 47.17, 46.92, 35.00, 30.72, 30.47, 28.78, 25.25, 19.82, 16.33; HRMS–ESI (m/z): [M + H]+ calcd. for C42H45N3O6, 688.3381; found, 688.3384. Comparison of the effects of different coupling reagents on the reaction
  • , 57.06, 56.41, 56.08, 38.96, 37.58, 37.01, 36.60, 35.79, 35.61, 33.11, 32.20, 31.89, 31.73, 31.53, 31.40, 30.88, 30.83, 30.66, 30.53, 30.39, 29.98, 29.64, 28.18, 26.97, 26.10, 23.80, 23.34, 19.88, 19.48, 18.17, 18.07, 17.64, 14.58; HRMS–ESI (m/z): [M + H]+ calcd. for C35H39N3O6, 598.2912; found, 598.2915
PDF
Album
Supp Info
Letter
Published 15 Dec 2021

Photophysical, photostability, and ROS generation properties of new trifluoromethylated quinoline-phenol Schiff bases

  • Inaiá O. Rocha,
  • Yuri G. Kappenberg,
  • Wilian C. Rosa,
  • Clarissa P. Frizzo,
  • Nilo Zanatta,
  • Marcos A. P. Martins,
  • Isadora Tisoco,
  • Bernardo A. Iglesias and
  • Helio G. Bonacorso

Beilstein J. Org. Chem. 2021, 17, 2799–2811, doi:10.3762/bjoc.17.191

Graphical Abstract
  • ), 123.36 (q, J = 274.0 Hz, CF3), 121.85 (C-4a), 119.64 (q, J = 5.3 Hz, C-3), 119.29 (C6H4OH), 119.01 (C6H4OH), 117.37 (C6H4OH), 114.75 (t, J = 2.2 Hz, C-5), 25.34 (CH3) ppm; 19F NMR (565 MHz, CDCl3) δ −61,71 (CF3) ppm; FTIR (ATR) ν: 3061 (ν OH), 1627 (ν CH=N), 1118 (ν C-O) cm−1; HRMS–ESI (m/z): [M + H
  • (565 MHz, CDCl3) δ −61.62 (CF3); FTIR (ATR) ν: 3057 (ν OH), 1625 (ν CH=N), 1029 (ν C-O) cm−1; HRMS–ESI (m/z): [M + Na]+ calcd for C23H15F3N2NaO, 415.1029; found, 415.1007. (E)-2-(((2-(p-Tolyl)-4-(trifluoromethyl)quinolin-6-yl)imino)methyl)phenol (3ca): Yellow solid, yield 81%; mp 210–213 °C; 1H NMR
  • ), 125.04 (C-7), 123.59 (q, J = 274.7 Hz, CF3), 122.37 (C-4a), 119.34 (C6H4OH), 119.10 (C6H4OH), 117.44 (C6H4OH), 116.40 (q, J = 7.3 Hz, C-3), 114.80 (C-5), 21.42 (4-CH3C6H4); 19F NMR (565 MHz, CDCl3) δ −61.65 (CF3); FTIR (ATR) ν: 3035 (ν OH), 1621 (ν CH=N), 1112 (ν C-O) cm−1; HRMS–ESI (m/z): [M + H]+ calcd
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2021

The PIFA-initiated oxidative cyclization of 2-(3-butenyl)quinazolin-4(3H)-ones – an efficient approach to 1-(hydroxymethyl)-2,3-dihydropyrrolo[1,2-a]quinazolin-5(1H)-ones

  • Alla I. Vaskevych,
  • Nataliia O. Savinchuk,
  • Ruslan I. Vaskevych,
  • Eduard B. Rusanov,
  • Oleksandr O. Grygorenko and
  • Mykhailo V. Vovk

Beilstein J. Org. Chem. 2021, 17, 2787–2794, doi:10.3762/bjoc.17.189

Graphical Abstract
  • –5.82 (m, 1H, CH), 5.07 (d, J = 17.2 Hz, 1H, =CH2), 4.98 (d, J = 10.4 Hz, 1H, =CH2), 2.70 (t, J = 7.2 Hz, 2H, CH2), 2.49–2.47 (m, 2H, CH2); 13C NMR (125 MHz, DMSO-d6) δ 161.8, 156.7, 148.9, 137.2, 134.2, 126.8, 125.9, 125.7, 120.9, 115.5, 33.7, 30.6; HRMS–ESI (m/z): [M + H]+ calcd for C12H12N2O
  • –3.82 (m, 1H, CH2), 3.67–3.61 (m, 1H, CH2), 3.22–3.15 (m, 1H, CH2), 2.83–2.81 (m, 1H, CH2), 2.44–2.33 (m, 1H, CH2), 2.22–2.16 (m, 1H, CH2); 13C NMR (125 MHz, DMSO-d6) δ 169.2, 167.4, 138.3, 133.4, 127.6, 125.3, 118.7, 116.1, 62.2, 61.3, 32.2, 22.7; HRMS–ESI (m/z): [M + H]+ calcd for C12H12N2O2
PDF
Album
Supp Info
Letter
Published 25 Nov 2021

The ethoxycarbonyl group as both activating and protective group in N-acyl-Pictet–Spengler reactions using methoxystyrenes. A short approach to racemic 1-benzyltetrahydroisoquinoline alkaloids

  • Marco Keller,
  • Karl Sauvageot-Witzku,
  • Franz Geisslinger,
  • Nicole Urban,
  • Michael Schaefer,
  • Karin Bartel and
  • Franz Bracher

Beilstein J. Org. Chem. 2021, 17, 2716–2725, doi:10.3762/bjoc.17.183

Graphical Abstract
  • Finnigan LTQ FT Ultra Fourier Transform Ion Cyclotron Resonance device at 250 °C for ESI. IR spectra were recorded on a Perkin Elmer FT-IR Paragon 1000 instrument as neat materials. Absorption bands were reported in wave numbers (cm−1), obtained on a ATR PRO450-S accessory (Jasco). Melting points were
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2021

Synthesis and investigation on optical and electrochemical properties of 2,4-diaryl-9-chloro-5,6,7,8-tetrahydroacridines

  • Najeh Tka,
  • Mohamed Adnene Hadj Ayed,
  • Mourad Ben Braiek,
  • Mahjoub Jabli and
  • Peter Langer

Beilstein J. Org. Chem. 2021, 17, 2450–2461, doi:10.3762/bjoc.17.162

Graphical Abstract
  • ) relative to tetramethylsilane (SiMe4) as internal standard. High-resolution MS (HRMS–ESI) was performed on an Agilent 1969 A TOF. The photophysical studies were carried out in freshly prepared dichloromethane solutions with concentrations of 1 × 10−5 M. The UV–vis spectra were recorded on a Shimadzu 2401
  • (CAr), 127.8 (CAr), 127.8 (CAr), 128.9 (CAr), 129.0 (CAr), 130.0 (CAr), 131.0 (CAr), 138.8 (Cl-CAr), 139.2 (CAr), 140.3 (CAr), 140.4 (CAr), 141.8 (CAr), 143.4 (N-CAr), 159.1 (N =CAr); HRMS–ESI (m/z): [M + H]+ calcd for C25H20ClN, 370.1355; found, 370.1357. 2,4-Bis(4-methoxyphenyl)-9-chloro-5,6,7,8
  • ); HRMS–ESI (m/z): [M + H]+ calcd for C27H24ClNO2, 430.1496; found, 430.1498. 2,4-Bis(4-trifluoromethoxyphenyl)-9-chloro-5,6,7,8-tetrahydroacridine (4c): white solid; (Hep/EA 9:1), 57%; mp 127–129 °C; 1H NMR (300 MHz, CDCl3) δ 1.71–1.89 (m, 4H, 2CH2), 2.91–2.99 (m, 4H, 2CH2), 7.11–7.27 (m, 4H, aryl-H
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2021

Efficient synthesis of polyfunctionalized carbazoles and pyrrolo[3,4-c]carbazoles via domino Diels–Alder reaction

  • Ren-Jie Fang,
  • Chen Yan,
  • Jing Sun,
  • Ying Han and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2021, 17, 2425–2432, doi:10.3762/bjoc.17.159

Graphical Abstract
  • , 125.6, 121.7, 120.7, 120.3, 119.2, 111.3, 21.1; IR (KBr) ν: 2988, 1786, 1734, 1611, 1485, 1456, 1357, 1314, 1185, 1021, 988, 786, 734 cm−1; HRMS–ESI-TOF (m/z): [M + Na]+ calcd for C34H22NaN2O3, 529.1523; found, 529.1512. 2. General procedure for the preparation of carbazoles 6a–n: To a round-bottomed
  • , 127.0, 126.9, 126.4, 122.4, 122.0, 121.8, 121.6, 119.6, 108.7, 32.1; IR (KBr) ν: 3057, 3023, 2907, 2360, 2339, 1720, 1605, 1482, 1320, 1267, 1172, 1009, 936, 805, 743, 612, 447 cm−1; HRMS–ESI (m/z): [M + Na]+ calcd for C39H27NO2, 564.1934; found, 564.1926. The crystallographic data of the compounds 3a
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2021

Isolation and characterization of new phenolic siderophores with antimicrobial properties from Pseudomonas sp. UIAU-6B

  • Emmanuel T. Oluwabusola,
  • Olusoji O. Adebisi,
  • Fernando Reyes,
  • Kojo S. Acquah,
  • Mercedes De La Cruz,
  • Larry L. Mweetwa,
  • Joy E. Rajakulendran,
  • Digby F. Warner,
  • Deng Hai,
  • Rainer Ebel and
  • Marcel Jaspars

Beilstein J. Org. Chem. 2021, 17, 2390–2398, doi:10.3762/bjoc.17.156

Graphical Abstract
  • Figure 1 and Supporting Information File 1 for details) which were comparable with those reported in the literature [28][36][37]. Pseudomonin A (1) was isolated as a yellowish compound. The molecular formula of C11H15O4N2 with 6 degrees of unsaturation was established by high-resolution ESI-Orbitrap-MS
  • system (Accela PDA detector, Accela PDA autosampler, and Accela pump) or an Agilent 6540 in ESI-TOF MS coupled to an HPLC Agilent 1290 Infinity equipped with a diode array detector (DAD). Chromatographic fractionation was carried out on a Reveleris preparative flash system equipped with a reversed-phase
PDF
Album
Supp Info
Full Research Paper
Published 13 Sep 2021

Phenolic constituents from twigs of Aleurites fordii and their biological activities

  • Kyoung Jin Park,
  • Won Se Suh,
  • Da Hye Yoon,
  • Chung Sub Kim,
  • Sun Yeou Kim and
  • Kang Ro Lee

Beilstein J. Org. Chem. 2021, 17, 2329–2339, doi:10.3762/bjoc.17.151

Graphical Abstract
  • ), 248 (5.1), 229 (−8.5) nm; 1H and 13C NMR data, see Table 1; positive HRMS–ESI (m/z): [M + Na]+ calcd for C26H34O10Na, 529.2050; found, 529.2050. Aleuritiside C (3). Colorless gum; [α]D25 −23.4 (c 0.05, MeOH); IR (KBr) νmax: 3361, 2946, 2830, 1462, 1029 cm−1; UV (MeOH) λmax, nm (log ε): 275 (2.53); ECD
  • (MeOH) λmax, nm (Δε): 273 (−8.1), 236 (−8.3); 1H and 13C NMR data, see Table 1; positive HRMS–ESI (m/z): [M + Na]+ calcd for C26H36O11Na, 547.2155; found, 547.2155. Aleuriteoside A (15). Colorless gum; [α]D25 −13.7 (c 0.08, MeOH); IR (KBr) νmax: 3321, 2975, 1675, 1601, 1453, 1065 cm−1; UV (MeOH) λmax
  • , nm (log ε): 280 (2.31); 1H and 13C NMR data, see Table 2; positive HRMS–ESI (m/z): [M + Na]+ calcd for C17H24O10Na, 411.1267; found, 411.1260. Aleucyanoglucoside (16). Colorless gum; [α]D25 −33.5 (c 0.30, MeOH); IR (KBr) νmax: 3535, 3330, 2832, 2218, 1453, 1033 cm−1; UV (MeOH) λmax, nm (log ε): 283
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2021

On the application of 3d metals for C–H activation toward bioactive compounds: The key step for the synthesis of silver bullets

  • Renato L. Carvalho,
  • Amanda S. de Miranda,
  • Mateus P. Nunes,
  • Roberto S. Gomes,
  • Guilherme A. M. Jardim and
  • Eufrânio N. da Silva Júnior

Beilstein J. Org. Chem. 2021, 17, 1849–1938, doi:10.3762/bjoc.17.126

Graphical Abstract
  • behaves as a terminal oxidant to form α-aminoalkyl radicals, whereas the formation of an Fe-peroxo species in the catalytic cycle was confirmed using a combination of EPR and ESI mass spectrometry experiments (Scheme 31D). One-pot processes for the synthesis of benzo[b]furans from aryl- or alkylketones
PDF
Album
Review
Published 30 Jul 2021

2,4-Bis(arylethynyl)-9-chloro-5,6,7,8-tetrahydroacridines: synthesis and photophysical properties

  • Najeh Tka,
  • Mohamed Adnene Hadj Ayed,
  • Mourad Ben Braiek,
  • Mahjoub Jabli,
  • Noureddine Chaaben,
  • Kamel Alimi,
  • Stefan Jopp and
  • Peter Langer

Beilstein J. Org. Chem. 2021, 17, 1629–1640, doi:10.3762/bjoc.17.115

Graphical Abstract
  • -CAr), 161.1 (N =CAr); HRMS (ESI): [M]+ calcd for C29H20ClN, 417.1284; found, 417.1265. 2,4-Bis(o-tolylethynyl)-9-chloro-5,6,7,8-tetrahydroacridine (4b): pale green solid (385 mg, 0.85 mmol, 85%); mp 119–120 °C; 1H NMR (300 MHz, CDCl3) δ 1.78–1.93 (m, 4H, 2CH2), 2.52 (s, 3H, aryl-CH3), 2.66 (s, 3H
  • (Csp), 90.2 (Csp), 92.3 (Csp), 95.8 (Csp), 119.7 (CAr), 121.80 (CAr), 122.9 (CAr), 123.1 (CAr), 125.5 (CAr), 126.8 (CAr), 128.6 (CAr), 128.8 (CAr), 129.4 (CAr), 129.6 (CAr), 130.3 (CAr), 130.4 (CAr), 132.1 (CAr), 135.8 (Cl-CAr), 141.1 (CAr), 145.0 (N-CAr), 160.8 (N =CAr); HRMS (ESI): [M]+ calcd for
  • ), 121.53 (CAr), 122.58 (CAr), 122.96 (CAr), 123.15 (CAr), 125.51 (CAr), 127.08 (CAr), 128.19 (CAr), 128.36 (CAr), 129.15 (CAr), 129.62 (CAr), 130.25 (CAr), 132.60 (CAr), 136.37 (CAr), 138.16 (Cl-CAr), 141.79 (CAr), 145.15 (N-CAr), 160.99 (N =CAr); HRMS (ESI): [M]+ calcd for C31H24ClN, 445.1597; found
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2021

A straightforward conversion of 1,4-quinones into polycyclic pyrazoles via [3 + 2]-cycloaddition with fluorinated nitrile imines

  • Greta Utecht-Jarzyńska,
  • Karolina Nagła,
  • Grzegorz Mlostoń,
  • Heinz Heimgartner,
  • Marcin Palusiak and
  • Marcin Jasiński

Beilstein J. Org. Chem. 2021, 17, 1509–1517, doi:10.3762/bjoc.17.108

Graphical Abstract
  • , HMQC, and HMBC). The UV–vis spectra were measured on a PerkinElmer Lambda 45 spectrophotometer in spectroscopic grade CH2Cl2. MS (ESI) were performed with a Varian 500-MS LC Ion Trap. The IR spectra were measured neat with an Agilent Cary 630 FTIR spectrometer. Elemental analyses were obtained with a
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2021

Analogs of the carotane antibiotic fulvoferruginin from submerged cultures of a Thai Marasmius sp.

  • Birthe Sandargo,
  • Leon Kaysan,
  • Rémy B. Teponno,
  • Christian Richter,
  • Benjarong Thongbai,
  • Frank Surup and
  • Marc Stadler

Beilstein J. Org. Chem. 2021, 17, 1385–1391, doi:10.3762/bjoc.17.97

Graphical Abstract
  • distinct. Considering other rDNA regions currently leads to more questions than answers regarding the phylogeny and clearly shows the need for further taxonomic re-evaluation. Experimental General experimental procedures An Agilent 1200 series HPLC-UV system (Santa Clara, CA, USA) with an ESI-TOF-MS (MaXis
  • are provided in Supporting Information File 1. Fulvoferruginin B (2): faint yellow solid; [α]D20 +14 (c 1, MeOH); UV (MeOH) λmax (log ε) 200 (3.7), 249 (3.5) nm; 1H NMR and 13C NMR data (1H 700 MHz, 13C 175 MHz) in CD3OD: see Table 1; HRMS–ESI (m/z): [M + H]+ calcd for C15H21O3+, 249.1477; found
  • ESI (m/z): [M + H]+ calcd for C15H18O4+, 263.1283; found, 263.1276. Fulvoferruginin D (4): light yellow solid; [α]D20 +19 (c 1, MeOH); UV (MeOH) λmax (log ε) 201 (4.4), 249 (4.2) nm; 1H (700 MHz) and 13C NMR (175 MHz) data in CD3OD are collected in Table 1 and copies of spectra are collected in
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2021

Structural effects of meso-halogenation on porphyrins

  • Keith J. Flanagan,
  • Maximilian Paradiz Dominguez,
  • Zoi Melissari,
  • Hans-Georg Eckhardt,
  • René M. Williams,
  • Dáire Gibbons,
  • Caroline Prior,
  • Gemma M. Locke,
  • Alina Meindl,
  • Aoife A. Ryan and
  • Mathias O. Senge

Beilstein J. Org. Chem. 2021, 17, 1149–1170, doi:10.3762/bjoc.17.88

Graphical Abstract
  • quadrupole time-of-flight (Q-TOF) mass spectrometer equipped with Z-spray electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) sources either in a positive or negative mode with DCTB (trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile) as the matrix. UV
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2021

Synthesis of 10-O-aryl-substituted berberine derivatives by Chan–Evans–Lam coupling and investigation of their DNA-binding properties

  • Peter Jonas Wickhorst,
  • Mathilda Blachnik,
  • Denisa Lagumdzija and
  • Heiko Ihmels

Beilstein J. Org. Chem. 2021, 17, 991–1000, doi:10.3762/bjoc.17.81

Graphical Abstract
  • = 77.2 ppm). Elemental analyses: HEKAtech EUROEA combustion analyzer, determined by Rochus Breuer, Organische Chemie I, Universität Siegen. Mass spectra (ESI): Finnigan LCQ Deca (U = 6 kV; working gas: Ar; auxiliary gas: N2; temperature of the capillary: 200 °C). Circular dichroism (CD) and linear
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2021

Highly regio- and stereoselective phosphinylphosphination of terminal alkynes with tetraphenyldiphosphine monoxide under radical conditions

  • Dat Phuc Tran,
  • Yuki Sato,
  • Yuki Yamamoto,
  • Shin-ichi Kawaguchi,
  • Shintaro Kodama,
  • Akihiro Nomoto and
  • Akiya Ogawa

Beilstein J. Org. Chem. 2021, 17, 866–872, doi:10.3762/bjoc.17.72

Graphical Abstract
  • BioSpin Ascend 400 spectrometer (162 MHz). 19F NMR spectra were recorded on a Bruker BioSpin Ascend 400 spectrometer (377 MHz). IR spectra were recorded on JASCO FT/IR-680Plus instrument. High-resolution mass spectra (HRMS) were recorded on a Bruker micrOTOF II ESI(+)/TOF instrument. General procedure for
PDF
Album
Supp Info
Full Research Paper
Published 20 Apr 2021

Chiral isothiourea-catalyzed kinetic resolution of 4-hydroxy[2.2]paracyclophane

  • David Weinzierl and
  • Mario Waser

Beilstein J. Org. Chem. 2021, 17, 800–804, doi:10.3762/bjoc.17.68

Graphical Abstract
  • ), 35.4 (1C, -CH2), 34.9 (1C, -CH2), 34.0 (1C, -CH2), 32.2 (1C, -CH2); HRMS (ESI) m/z: calcd for [C16H16O + H]+, 225.1274; found, 225.1280, HPLC: YMC Chiral ART Cellulose-SB, n-hexane/iPrOH 3:1, 1 mL/min, 10 °C; tR = 6.4 min [Sp; minor], 7.2 min [Rp; major]. (Sp)-3a: Analytical data match those reported
  • (1C, -CH2), 35.0 (1C, -CH2), 34.4 (2C, -CH, -CH2), 31.8 (1C, -CH2), 19.4 (1C, -CH3), 19.1 (1C, -CH3); HRMS (ESI) m/z: calcd for [C20H22O2 + NH4]+, 312.1958; found, 312.1958, HPLC: YMC Chiral ART Cellulose-SB, n-hexane/iPrOH 3:1, 1 mL/min, 10 °C; tR = 7.3 min [Rp; minor], 8.4 min [Sp; major]. Overview
PDF
Album
Supp Info
Letter
Published 08 Apr 2021

Designed whole-cell-catalysis-assisted synthesis of 9,11-secosterols

  • Marek Kõllo,
  • Marje Kasari,
  • Villu Kasari,
  • Tõnis Pehk,
  • Ivar Järving,
  • Margus Lopp,
  • Arvi Jõers and
  • Tõnis Kanger

Beilstein J. Org. Chem. 2021, 17, 581–588, doi:10.3762/bjoc.17.52

Graphical Abstract
  • 6540 UHD Accurate-Mass QTOF LC/MS spectrometer by using AJ-ESI as an ionization method. Construction of biocatalyst Plasmid cloning and amplification were performed in E. coli DH5 strain. E. coli strain BL21 (DE3) was used for biocatalysis experiments. Lysogeny broth (LB) medium was used for all cell
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2021
Graphical Abstract
  • by chiral HPLC chromatography using Agilent instrument. All new products were further analyzed by LC/MS–HRMS–TOF or MALDI–ESI–TOFMS. Synthesis of organocatalyst 5 A solution of quinineamine 2 (226.40 mg, 0.70 mmol) and triethylamine (107 μL, 0.77 mmol) in CH2Cl2 was added to a screw-capped reaction
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2021

Synthesis of legonmycins A and B, C(7a)-hydroxylated bacterial pyrrolizidines

  • Wilfred J. M. Lewis,
  • David M. Shaw and
  • Jeremy Robertson

Beilstein J. Org. Chem. 2021, 17, 334–342, doi:10.3762/bjoc.17.31

Graphical Abstract
  • pyrrole 18, and the appearance of new resonances at 3.21 (ddd, J = 11.5, 9.0, 2.5 Hz, 1H) and 3.64 (dt, J = 11.5, 8.5 Hz, 1H) ppm that correspond visually with those reported for the diastereotopic CH2N protons in legonmycin A. HRMS (ESI+) analysis of material isolated from this NMR experiment showed m/z
  • , 36.2, 47.0 (three peaks), 63.3, 63.8, 64.5, 64.7, 80.5, 80.9, 81.0, 81.1, 117.8, 118.0, 118.1, 154.7, 155.4, 200.6 (two peaks), 201.0, 201.6; HRMS–ESI+ (m/z): [M + Na]+ calcd for C13H20N2O3Na, 275.1366; found, 275.1366. (S)-3-Amino-2-methyl-5,6,7,7a-tetrahydro-1H-pyrrolizin-1-one hydrochloride (17
  • = 10.0, 8.5, 2.5 Hz, 1H), 4.44 (dd, J = 10.5, 5.5 Hz, 1H); 13C NMR (100 MHz, CD3OD) δ 5.8, 28.4, 30.2, 46.5, 70.0, 101.3 (from a separate spectrum of a stronger but impure sample), 174.4, 176.7; HRMS–ESI+ (m/z): [M]+ calcd for C8H13N2O, 153.1022; found, 153.1022. The free-base was also prepared in a
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2021

Hydrazides in the reaction with hydroxypyrrolines: less nucleophilicity – more diversity

  • Dmitrii A. Shabalin,
  • Evgeniya E. Ivanova,
  • Igor A. Ushakov,
  • Elena Yu. Schmidt and
  • Boris A. Trofimov

Beilstein J. Org. Chem. 2021, 17, 319–324, doi:10.3762/bjoc.17.29

Graphical Abstract
  • Center for collective use SB RAS. ESI-HRMS-TOF spectra were recorded at Shared Research Facilities for Physical and Chemical Ultramicroanalysis, Limnological Institute, SB RAS. Funding The reported study was funded by RFBR according to the research project No. 18-33-00089.
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2021

1,2,3-Triazoles as leaving groups in SNAr–Arbuzov reactions: synthesis of C6-phosphonated purine derivatives

  • Kārlis-Ēriks Kriķis,
  • Irina Novosjolova,
  • Anatoly Mishnev and
  • Māris Turks

Beilstein J. Org. Chem. 2021, 17, 193–202, doi:10.3762/bjoc.17.19

Graphical Abstract
  • , 75.5 MHz) δ 154.3 (D, 3JC–P = 11.7 Hz), 154.2 (D, 3JC–P = 7.7 Hz), 152.5 (D, 1JC–P = 203.6 Hz), 147.5, 134.3 (D, 2JC–P = 21.4 Hz), 64.2 (D, 2JC–P = 6.1 Hz), 44.2, 31.5, 29.8, 28.6, 26.5, 22.5, 16.4 (D, 3JC–P = 6.2 Hz), 14.4; 31P NMR (CDCl3, 121 MHz) δ 5.3; HRMS-ESI (m/z): [M + H]+ calcd for
  • -ESI (m/z): [M + H]+ calcd for C20H25N10O4, 469.2055; found, 469.2022. General procedure for the SNAr–Arbuzov reaction: synthesis of 9-alkyl-2-triazolyl-9H-purine C6-phosphonates 4 Methyl 1-(6-(diethoxyphosphoryl)-9-heptyl-9H-purin-2-yl)-1H-1,2,3-triazole-4-carboxylate (4a): Dimethyl 1,1'-(9-heptyl-9H
  • , CDCl3) δ 160.9, 154.0 (D, 3JC–P = 11.1 Hz), 152.4 (D, 1JC–P = 220.6 Hz), 148.6, 148.3 (D, 3JC–P = 23.4 Hz), 140.3, 135.3 (D, 2JC–P = 20.8 Hz), 127.4, 64.5 (D, 2JC–P = 6.2 Hz), 52.6, 44.6, 31.6, 29.9, 28.7, 26.7, 22.7, 16.6 (D, 3JC–P = 5.9 Hz), 14.1; 31P NMR (202 MHz, CDCl3) δ 5.3; HRMS-ESI (m/z): [M + H
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2021

Control over size, shape, and photonics of self-assembled organic nanocrystals

  • Chen Shahar,
  • Yaron Tidhar,
  • Yunmin Jung,
  • Haim Weissman,
  • Sidney R. Cohen,
  • Ronit Bitton,
  • Iddo Pinkas,
  • Gilad Haran and
  • Boris Rybtchinski

Beilstein J. Org. Chem. 2021, 17, 42–51, doi:10.3762/bjoc.17.5

Graphical Abstract
  • applicability of organic nanocrystals. Experimental General information The 1H and 13C NMR spectra were recorded at 20 °C on a 300 MHz NMR spectrometer (Bruker). Electrospray ionization (ESI) mass spectrometry was performed using a Micromass Platform instrument. UV–vis absorption and fluorescence measurements
PDF
Album
Supp Info
Full Research Paper
Published 06 Jan 2021

Naphthalonitriles featuring efficient emission in solution and in the solid state

  • Sidharth Thulaseedharan Nair Sailaja,
  • Iván Maisuls,
  • Jutta Kösters,
  • Alexander Hepp,
  • Andreas Faust,
  • Jens Voskuhl and
  • Cristian A. Strassert

Beilstein J. Org. Chem. 2020, 16, 2960–2970, doi:10.3762/bjoc.16.246

Graphical Abstract
  • characterization of H – NMe2 and its aggregates. 1H NMR, 13C NMR and EM-ESI-MS spectra of all the six compounds. Supporting Information File 404: Experimental procedures, NMR and EM-ESI-MS spectra. Acknowledgements We thankfully acknowledge Lic. Matias E. Gutierrez Suburu for his assistance with the DLS
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2020

Synthesis and investigation of quadruplex-DNA-binding, 9-O-substituted berberine derivatives

  • Jonas Becher,
  • Daria V. Berdnikova,
  • Heiko Ihmels and
  • Christopher Stremmel

Beilstein J. Org. Chem. 2020, 16, 2795–2806, doi:10.3762/bjoc.16.230

Graphical Abstract
  • the corresponding solvent [δ(DMSO-d5) = 2.50 (1H) and 39.5 (13C); δ(CHCl3) = 7.26 (1H) and 77.2 (13C)]. Elemental analyses data were determined with a HEKAtech EURO EA combustion analyzer by Mr. Rochus Breuer (Organic Chemistry I, University of Siegen). Mass spectra (ESI) were recorded on a Finnigan
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2020

Ring-closing metathesis of prochiral oxaenediynes to racemic 4-alkenyl-2-alkynyl-3,6-dihydro-2H-pyrans

  • Viola Kolaříková,
  • Markéta Rybáčková,
  • Martin Svoboda and
  • Jaroslav Kvíčala

Beilstein J. Org. Chem. 2020, 16, 2757–2768, doi:10.3762/bjoc.16.226

Graphical Abstract
  • internal standards. Chemical shifts are given in parts per million and coupling constants in hertz. Mass spectra (ESI, APCI) and HRMS spectra were measured with a hybrid LTQ Obitrap XL instrument (Thermo Fisher Scientific). All reactions were performed in a dry inert atmosphere (Ar) in oven-dried flasks
  • ), 129.0 (s, 1C, CH3-C=C), 129.1 (s, 2C, CHAr), 131.9 (s, 1C, CAr), 176.8 (s, 1C, CH-CH-C=O), 178.5 (s, 1C, CH2-CH-C=O); MS (ESI+, m/z) (%): 372.2 [M + Na]+ (100), 350.2 [M + H]+ (20); HRMS (ESI+, m/z): [M + H]+ calcd for C22H24O3N, 350.1751; found, 350.1752; HRMS (ESI+, m/z): [M + Na]+ calcd for
  • ), 128.5 (s, 1C, CHAr), 129.1 (s, 2C, CHAr), 131.8 (s, 1C, CAr), 177.0 (s, 1C, CH-CH-C=O), 178.5 (s, 1C, CH2-CH-C=O); MS (ESI+, m/z): 372.2 [M + Na]+ (100), 350.2 [M + H]+ (35); HRMS (ESI+, m/z): [M + H]+ calcd for C22H24O3N, 350.1751; found, 350.1752; HRMS (ESI+, m/z): [M + Na]+ calcd for C22H23O3NNa
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2020
Other Beilstein-Institut Open Science Activities