Search results

Search for "bromination" in Full Text gives 204 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Synthesis of a novel aminobenzene-containing hemicucurbituril and its fluorescence spectral properties with ions

  • Qingkai Zeng,
  • Qiumeng Long,
  • Jihong Lu,
  • Li Wang,
  • Yuting You,
  • Xiaoting Yuan,
  • Qianjun Zhang,
  • Qingmei Ge,
  • Hang Cong and
  • Mao Liu

Beilstein J. Org. Chem. 2021, 17, 2840–2847, doi:10.3762/bjoc.17.195

Graphical Abstract
  • reduction of 5-nitroisophthalic acid with NaBH4 and BF3·Et2O followed by subsequent bromination with PBr3 [46] and 2-imidazolidinone (6) were used as building blocks. By controlling the molar ratio of 5 and 6 at 1:10 or 6:1 and the reaction conditions, products 7 and 8 were readily accessible with 25.3
PDF
Album
Supp Info
Letter
Published 06 Dec 2021

Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds

  • Alemayehu Gashaw Woldegiorgis and
  • Xufeng Lin

Beilstein J. Org. Chem. 2021, 17, 2729–2764, doi:10.3762/bjoc.17.185

Graphical Abstract
  • asymmetric bromination reaction afforded monobrominated biaryls with excellent enantioselectivities up to 99% ee (Scheme 4). The experimental and computational studies showed that the highly organized hydrogen-bonding network between a substrate, a chiral phosphoric acid catalyst (CPA 3), and a brominating
PDF
Album
Review
Published 15 Nov 2021

Synthetic strategies toward 1,3-oxathiolane nucleoside analogues

  • Umesh P. Aher,
  • Dhananjai Srivastava,
  • Girij P. Singh and
  • Jayashree B. S

Beilstein J. Org. Chem. 2021, 17, 2680–2715, doi:10.3762/bjoc.17.182

Graphical Abstract
  • was prepared from ᴅ-mannose (3c) by protecting the primary alcohol with a tosyl group, followed by protection of the four hydroxy groups by acetylation. Further, bromo-substituted sugar compound 10 was obtained by a bromination reaction of the anomeric acetyl group. 1,6-Thioanhydro-β-mannose
PDF
Album
Review
Published 04 Nov 2021

Recent advances in the tandem annulation of 1,3-enynes to functionalized pyridine and pyrrole derivatives

  • Yi Liu,
  • Puying Luo,
  • Yang Fu,
  • Tianxin Hao,
  • Xuan Liu,
  • Qiuping Ding and
  • Yiyuan Peng

Beilstein J. Org. Chem. 2021, 17, 2462–2476, doi:10.3762/bjoc.17.163

Graphical Abstract
  • structural motifs to provide the functionalized pyridine and pyrrole derivatives. The functionalization reactions cover iodination, bromination, trifluoromethylation, azidation, carbonylation, arylation, alkylation, selenylation, sulfenylation, amidation, esterification, and hydroxylation. We also briefly
  • functionalizations of pyrrole derivatives, such as iodination, bromination, trifluoromethylation, azidation, carbonylation, arylation, and alkylation. The proposed mechanism generally involves two kinds of intramolecular cyclizations: one is 6-endo-dig cyclization to promote the formation of pyridine ring
PDF
Album
Review
Published 22 Sep 2021

Synthesis of 5-arylacetylenyl-1,2,4-oxadiazoles and their transformations under superelectrophilic activation conditions

  • Andrey I. Puzanov,
  • Dmitry S. Ryabukhin,
  • Anna S. Zalivatskaya,
  • Dmitriy N. Zakusilo,
  • Darya S. Mikson,
  • Irina A. Boyarskaya and
  • Aleksander V. Vasilyev

Beilstein J. Org. Chem. 2021, 17, 2417–2424, doi:10.3762/bjoc.17.158

Graphical Abstract
  • Acetylene derivatives of 1,2,4-oxadiazoles, i.e., 5-(2-arylethynyl)-3-aryl-1,2,4-oxadiazoles, have been obtained, for the first time reported, from 5-(2-arylethenyl)-3-aryl-1,2,4-oxadiazoles by their bromination at the carbon–carbon double bond followed by di-dehydrobromination with NaNH2 in liquid NH3. The
  • (TfOH), the strong Lewis acids AlX3 (X = Cl, Br), or the acidic zeolite CBV-720. Results and Discussion The synthesis of 5-arylethynyl-1,2,4-oxadiazoles 3 was based on transformations of the corresponding 5-styryloxadiazoles, i.e., 5-(2-arylethenyl)-3-aryl-1,2,4-oxadiazoles 1a–g (Scheme 1). Bromination
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2021

Catalyzed and uncatalyzed procedures for the syntheses of isomeric covalent multi-indolyl hetero non-metallides: an account

  • Ranadeep Talukdar

Beilstein J. Org. Chem. 2021, 17, 2102–2122, doi:10.3762/bjoc.17.137

Graphical Abstract
  • , 26, and 28. The materials were prepared by the Pd(0)-mediated coupling of lithium N-arylindole-3-alkoxide 21 with 3-bromo-N-arylindole 22, followed by a further C-2 bromination (24) and subsequent Suzuki reaction with boronic acids 27 or 25 (Scheme 4) [42]. A similar class of molecules have found
PDF
Album
Review
Published 19 Aug 2021

Recent advances in the syntheses of anthracene derivatives

  • Giovanni S. Baviera and
  • Paulo M. Donate

Beilstein J. Org. Chem. 2021, 17, 2028–2050, doi:10.3762/bjoc.17.131

Graphical Abstract
  • known procedure, the authors converted commercially available 2-aminoanthraquinone (71) to 2-hydroxyanthraquinone (72), followed by bromination that led to a mixture of bromoanthraquinones 73a–c (Scheme 17). According to the authors, many existing methods to reduce anthraquinones 73a and 73b have been
PDF
Album
Review
Published 10 Aug 2021

Breaking paracyclophane: the unexpected formation of non-symmetric disubstituted nitro[2.2]metaparacyclophanes

  • Suraj Patel,
  • Tyson N. Dais,
  • Paul G. Plieger and
  • Gareth J. Rowlands

Beilstein J. Org. Chem. 2021, 17, 1518–1526, doi:10.3762/bjoc.17.109

Graphical Abstract
  • rearrangement to [2.2]metaparacyclophane (3) occurred prior to nitration. Firstly, no [2.2]metaparacyclophane (3) was ever observed in our nitration reaction mixtures. Secondly, Cram has reported that the major product of both bromination and acylation of [2.2]metaparacyclophane (3) arises from electrophilic
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2021

A straightforward conversion of 1,4-quinones into polycyclic pyrazoles via [3 + 2]-cycloaddition with fluorinated nitrile imines

  • Greta Utecht-Jarzyńska,
  • Karolina Nagła,
  • Grzegorz Mlostoń,
  • Heinz Heimgartner,
  • Marcin Palusiak and
  • Marcin Jasiński

Beilstein J. Org. Chem. 2021, 17, 1509–1517, doi:10.3762/bjoc.17.108

Graphical Abstract
  • bromination of the corresponding trifluoroacetaldehyde hydrazones in dry DMF at room temperature as described in an earlier publication [21]. The latter arylhydrazones were obtained according to a general literature protocol by condensation of aqueous fluoral hydrate (≈75% in H2O) with commercially available
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2021
Graphical Abstract
  • virtue of the Ullmann-type coupling reaction. The tribromotruxene derivative 5 was prepared from the same starting point 1 in three steps (cyclotrimerization, bromination and alkylation) using the literature reported procedures (Scheme 1). Hopefully, these three distinctly different crucial strategies
  • the bromination using Br2/CH2Cl2 and then subsequent alkylation followed by Ullmann-type copper-mediated cross-coupling reaction in overall good yield (Scheme 4). On the other hand, imidazole and benzimidazole containing C3-symmetric truxene-based molecules (14 and 16) have also been assembled from
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2021

Fritsch–Buttenberg–Wiechell rearrangement of magnesium alkylidene carbenoids leading to the formation of alkynes

  • Tsutomu Kimura,
  • Koto Sekiguchi,
  • Akane Ando and
  • Aki Imafuji

Beilstein J. Org. Chem. 2021, 17, 1352–1359, doi:10.3762/bjoc.17.94

Graphical Abstract
  • hydroxy group in the adducts, and β-elimination (Scheme 3a) [16]. The 1-bromovinyl p-tolyl sulfoxide 6 was prepared by the deprotonation of sulfoxide 8 with LDA followed by electrophilic bromination with 1,2-dibromo-1,1,2,2-tetrachloroethane. 1-Methoxyvinyl p-tolyl sulfoxide 7 was prepared by a Peterson
PDF
Album
Supp Info
Full Research Paper
Published 28 May 2021

Structural effects of meso-halogenation on porphyrins

  • Keith J. Flanagan,
  • Maximilian Paradiz Dominguez,
  • Zoi Melissari,
  • Hans-Georg Eckhardt,
  • René M. Williams,
  • Dáire Gibbons,
  • Caroline Prior,
  • Gemma M. Locke,
  • Alina Meindl,
  • Aoife A. Ryan and
  • Mathias O. Senge

Beilstein J. Org. Chem. 2021, 17, 1149–1170, doi:10.3762/bjoc.17.88

Graphical Abstract
  • the effect of the di-bromination is evident. The addition of a phenyl ring to the 15-position (compound 5) increases the disorder observed. However, when this is changed to a bromine atom, an alleviation of ring strain is observed resulting in a structure that is more planar than compound 1
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2021

Manganese/bipyridine-catalyzed non-directed C(sp3)–H bromination using NBS and TMSN3

  • Kumar Sneh,
  • Takeru Torigoe and
  • Yoichiro Kuninobu

Beilstein J. Org. Chem. 2021, 17, 885–890, doi:10.3762/bjoc.17.74

Graphical Abstract
  • Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan 10.3762/bjoc.17.74 Abstract A Mn(II)/bipyridine-catalyzed bromination reaction of unactivated aliphatic C(sp3)−H bonds has been developed using N-bromosuccinimide (NBS) as the brominating reagent. The reaction proceeded in moderate-to-good yield, even on a
  • gram scale. The introduced bromine atom can be converted into fluorine and allyl groups. Keywords: bromination; C–H transformation; hydrogen abstraction; manganese; radical; Introduction Organic halides are versatile precursors for various synthetic protocols and are frequently used to introduce a
  • radical C(sp3)−H halogenation at the benzylic and allylic position using N-halosuccinimide with azobisisobutyronitrile or benzoyl peroxide as a radical initiator is known as the Wohl–Ziegler bromination reaction, which requires heating, acidic/basic conditions, and/or UV irradiation (Scheme 1a) [17][18
PDF
Album
Supp Info
Letter
Published 22 Apr 2021

Synthesis of bis(aryloxy)fluoromethanes using a heterodihalocarbene strategy

  • Carl Recsei and
  • Yaniv Barda

Beilstein J. Org. Chem. 2021, 17, 813–818, doi:10.3762/bjoc.17.70

Graphical Abstract
  • dibromide 3, produced by radical bromination of key intermediate 4. The principal challenge entailed in the envisaged synthesis was the construction of the bis(aryloxy)fluoromethane moiety of 4. The simplicity of this structure belies the paucity with which it is encountered in the literature, particularly
  • , we completed the radical bromination of 4 to produce 3 (Scheme 5), which was used to deliver the penultimate bis-thioether 2, with oxidation to 1 giving the target impurity structure as anticipated, with a combined yield for the three transformations from 4 to 1 of 42%. The synthesis of 4 was also
PDF
Album
Supp Info
Letter
Published 12 Apr 2021

Amino- and polyaminophthalazin-1(2H)-ones: synthesis, coordination properties, and biological activity

  • Zbigniew Malinowski,
  • Emilia Fornal,
  • Agata Sumara,
  • Renata Kontek,
  • Karol Bukowski,
  • Beata Pasternak,
  • Dariusz Sroczyński,
  • Joachim Kusz,
  • Magdalena Małecka and
  • Monika Nowak

Beilstein J. Org. Chem. 2021, 17, 558–568, doi:10.3762/bjoc.17.50

Graphical Abstract
  • )-ones 3a–d were prepared in two steps starting from phthalazin-1(2H)-one (1). The 4-bromo-derivative 2 was synthesized directly from lactam 1, which underwent the selective bromination at the 4-position using the combination of Br2 and KBr (KBr3) in acetate buffer, following the method previously
  • In conclusion, we have demonstrated an efficient synthesis of 2-substituted (alkyl, aminoalkyl) 4-aminophthalazinones 5 and 6 via the direct bromination of phthalazin-1(2H)-one (1) with potassium tribromide, followed by the alkylation of 4-bromophthalazinone 2 with methyl iodide, isopropyl iodide or
PDF
Album
Supp Info
Full Research Paper
Published 25 Feb 2021

Total synthesis of decarboxyaltenusin

  • Lucas Warmuth,
  • Aaron Weiß,
  • Marco Reinhardt,
  • Anna Meschkov,
  • Ute Schepers and
  • Joachim Podlech

Beilstein J. Org. Chem. 2021, 17, 224–228, doi:10.3762/bjoc.17.22

Graphical Abstract
  • to use a different protection group strategy and to employ hydrogenolytically cleavable benzyl groups. The synthesis of the benzyl-protected boronate was here achieved with a modified strategy including bromination [21] of 4-methylcatechol (2) to the known bromide 4 [26] and subsequent benzyl
PDF
Album
Supp Info
Full Research Paper
Published 22 Jan 2021

Supramolecular polymers with reversed viscosity/temperature profile for application in motor oils

  • Jan-Erik Ostwaldt,
  • Christoph Hirschhäuser,
  • Stefan K. Maier,
  • Carsten Schmuck and
  • Jochen Niemeyer

Beilstein J. Org. Chem. 2021, 17, 105–114, doi:10.3762/bjoc.17.11

Graphical Abstract
  • ACP unit to give compound 3. Secondly, hexyl substituents were installed in the periphery of the BINAM core via bromination and cross-coupling, giving compound 4. In both cases, the additional nonpolar substituents were expected to increase the solubility in nonpolar solvents. Thus, the solubility of
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2021

Pentannulation of N-heterocycles by a tandem gold-catalyzed [3,3]-rearrangement/Nazarov reaction of propargyl ester derivatives: a computational study on the crucial role of the nitrogen atom

  • Giovanna Zanella,
  • Martina Petrović,
  • Dina Scarpi,
  • Ernesto G. Occhiato and
  • Enrique Gómez-Bengoa

Beilstein J. Org. Chem. 2020, 16, 3059–3068, doi:10.3762/bjoc.16.255

Graphical Abstract
  • iodination and bromination of 10 proved to be more difficult than anticipated. For example, attempts to obtain the 3-iodo derivative 11 using I2/Cs2CO3 in dioxane [48], NIS in DMF [49], NIS/AgNO3 in acetonitrile [50], and NIS/TFA in DCM [51] failed completely or provided the desired product as a complex
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2020

All-carbon [3 + 2] cycloaddition in natural product synthesis

  • Zhuo Wang and
  • Junyang Liu

Beilstein J. Org. Chem. 2020, 16, 3015–3031, doi:10.3762/bjoc.16.251

Graphical Abstract
  • subjected to a bromination [62]/oxidation sequence followed by demethylation to produce (−)-lingzhiol (17). After the elegant synthesis of (−)-lingzhiol (17) was reported by Yang’s group [49], the same research group disclosed the synthesis of lycojaponicumin C (18) [58] and sinensilactam A (20) [59] in
PDF
Album
Review
Published 09 Dec 2020

Synthesis of imidazo[1,5-a]pyridines via cyclocondensation of 2-(aminomethyl)pyridines with electrophilically activated nitroalkanes

  • Dmitrii A. Aksenov,
  • Nikolai A. Arutiunov,
  • Vladimir V. Maliuga,
  • Alexander V. Aksenov and
  • Michael Rubin

Beilstein J. Org. Chem. 2020, 16, 2903–2910, doi:10.3762/bjoc.16.239

Graphical Abstract
  • -(bromomethyl)quinoline (21c) was prepared from commercially available 6-bromo-2-methylquinoline (22c, via radical bromination in the presence of NBS and dibenzoyl peroxide [51]. To this end, the methylquinoline 22c (3.33 g, 15 mmol) was dissolved in carbon tetrachloride (30 mL), and N-bromosuccinimide (2.94 g
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2020

Synthetic approaches to bowl-shaped π-conjugated sumanene and its congeners

  • Shakeel Alvi and
  • Rashid Ali

Beilstein J. Org. Chem. 2020, 16, 2212–2259, doi:10.3762/bjoc.16.186

Graphical Abstract
  • have also reported the functionalized sumanene derivatives 73–75 at the convex side of the internal carbon commencing from the bromination of the hydroxysumanene 68 using NBS and subsequent nucleophilic substitution reaction [47][48]. To their surprise, when they used molecular bromine instead of NBS
  • assessable 1,2,3,4,5,6-hexakis(bromomethyl)benzene (142) to generate benzotrithiophene 143 using sodium sulfide followed by DDQ oxidation. Having benzotrithiophene 143 in hand, it was then subjected to bromination using NBS in DMF to produce two isomeric tribromo derivatives 144 and 145 which were
PDF
Album
Review
Published 09 Sep 2020

Clickable azide-functionalized bromoarylaldehydes – synthesis and photophysical characterization

  • Dominik Göbel,
  • Marius Friedrich,
  • Enno Lork and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2020, 16, 1683–1692, doi:10.3762/bjoc.16.139

Graphical Abstract
  • of the ortho-bromine substituent was again accomplished by metalation using TMPMgCl·LiCl and subsequent reaction with 1,2-dibromotetrachloroethane to afford 11 in 76% yield. A second bromination at the benzylic position provided the dibrominated derivative 12 in 66% yield. The substitution reaction
  • -methylbenzaldehyde). Bromofluorenecarbaldehyde 5 The synthetic route to azide-functionalized 7-bromofluorene-2-carbaldehyde 5 started from unfunctionalized fluorene. Double bromination to 14, followed by double methylation of the methylene bridge to 15 and a lithiation/formylation sequence afforded 7-bromofluorene-2
  • fluorene showed such a high reactivity that rapid decomposition occurred. However, bromination was conducted by various substitution methods delivering benzyl bromide 24, which upon isolation cyclized to iminium bromide 25 in high yield. To suppress this unexpected cyclization, careful fine-adjustment of
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2020

Oxime radicals: generation, properties and application in organic synthesis

  • Igor B. Krylov,
  • Stanislav A. Paveliev,
  • Alexander S. Budnikov and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2020, 16, 1234–1276, doi:10.3762/bjoc.16.107

Graphical Abstract
PDF
Album
Review
Published 05 Jun 2020

One-pot synthesis of dicyclopenta-fused peropyrene via a fourfold alkyne annulation

  • Ji Ma,
  • Yubin Fu,
  • Junzhi Liu and
  • Xinliang Feng

Beilstein J. Org. Chem. 2020, 16, 791–797, doi:10.3762/bjoc.16.72

Graphical Abstract
  • selective bromination of 4 with 4.4 equiv of bromine in nitrobenzene solution at 120 °C afforded 1,3,6,8-tetrabromo-2,7-diphenylpyrene (5) in excellent yield (86%). Compared to insoluble 1,3,6,8-tetrabromopyrene [34], the diphenyl-substituted compound 5 exhibited excellent solubility in common organic
PDF
Album
Supp Info
Letter
Published 20 Apr 2020

Towards triptycene functionalization and triptycene-linked porphyrin arrays

  • Gemma M. Locke,
  • Keith J. Flanagan and
  • Mathias O. Senge

Beilstein J. Org. Chem. 2020, 16, 763–777, doi:10.3762/bjoc.16.70

Graphical Abstract
  • bromination of 17a [42] (Scheme 3). The coupling reaction was initially carried out with (5,15-dibromo-10,20-dihexyl/diphenyl)porphyrinato)zinc(II) but both porphyrins had extremely low solubility. Using the more soluble 17c gave access to the triptycene–porphyrin–triptycene complex 18. The reaction was
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2020
Other Beilstein-Institut Open Science Activities