Search results

Search for "quinolines" in Full Text gives 72 result(s) in Beilstein Journal of Organic Chemistry.

Photocatalyzed syntheses of phenanthrenes and their aza-analogues. A review

  • Alessandra Del Tito,
  • Havall Othman Abdulla,
  • Davide Ravelli,
  • Stefano Protti and
  • Maurizio Fagnoni

Beilstein J. Org. Chem. 2020, 16, 1476–1488, doi:10.3762/bjoc.16.123

Graphical Abstract
  • -obtained α-oxyalkyl radical intermediates were then trapped by biphenyl (or vinyl) isocyanides to afford functionalized phenanthridines, such as 9.3a (or quinolines) (Scheme 9, path a) [70]. A photogenerated nitrogen-based radical was likewise used to cleave the C–H bond α-to-nitrogen in amides to form the
  • reaction could be scaled up to a 10 mmol amount, allowing to obtain grams of the desired phenanthridines, which could be isolated in a pure form by a simple filtration [74]. Azaarenes different from phenanthridines (e.g., benzo[f]quinolines) could be likewise prepared by photocatalytic means. Thus, a
  • the synthesis of 6-(trifluoromethyl)phenanthridines 10.3a–e. Synthesis of phenanthridines via aryl–aryl-bond formation. Oxidative conversion of N-biarylglycine esters to phenanthridine-6-carboxylates. Photocatalytic synthesis of benzo[f]quinolines from 2-heteroaryl-substituted anilines and
PDF
Album
Review
Published 25 Jun 2020

Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis

  • Stephanie G. E. Amos,
  • Marion Garreau,
  • Luca Buzzetti and
  • Jerome Waser

Beilstein J. Org. Chem. 2020, 16, 1163–1187, doi:10.3762/bjoc.16.103

Graphical Abstract
PDF
Album
Review
Published 29 May 2020

Recent advances in photocatalyzed reactions using well-defined copper(I) complexes

  • Mingbing Zhong,
  • Xavier Pannecoucke,
  • Philippe Jubault and
  • Thomas Poisson

Beilstein J. Org. Chem. 2020, 16, 451–481, doi:10.3762/bjoc.16.42

Graphical Abstract
  • tetrahydroquinolines and octahydroisoquinolo[2,1-a]pyrrolo[3,4-c]quinolines (Scheme 13) [29]. Importantly, the formation of the key α-amino radical resulted from an oxidation reaction catalyzed by the copper catalyst in the oxidation state +II. Using the [Cu(I)(dap)2]Cl complex as the catalyst and 2 equivalents of TFA
  • reaction was excellent as bromides, phenols, thioethers, esters, boronic esters, and heterocycles, including pyridine and quinolines, were well tolerated. The authors carried out mechanistic studies and demonstrated the H-bonding ability of their catalyst by NMR studies. The following mechanism was
PDF
Album
Review
Published 23 Mar 2020

Synthesis of 3-alkenylindoles through regioselective C–H alkenylation of indoles by a ruthenium nanocatalyst

  • Abhijit Paul,
  • Debnath Chatterjee,
  • Srirupa Banerjee and
  • Somnath Yadav

Beilstein J. Org. Chem. 2020, 16, 140–148, doi:10.3762/bjoc.16.16

Graphical Abstract
  • , there are few reports. For example, the supported Ru-catalysed regiospecific C(sp2)–H arylation of benzo[h]quinolines and the addition of vinylsilanes to the C–H bonds of α-tetralones were reported by Inoue and co-workers [41][42]. Pieters et al. reported the Ru nanoparticle-catalysed C–H deuteration
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2020

Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups

  • Xiaowei Li,
  • Xiaolin Shi,
  • Xiangqian Li and
  • Dayong Shi

Beilstein J. Org. Chem. 2019, 15, 2213–2270, doi:10.3762/bjoc.15.218

Graphical Abstract
  • the corresponding products with wide substrate tolerance in moderate to good yields (Scheme 82). After one year, the group of Cai [147] presented a Cu(II)-catalyzed 8-amido chelation-induced regioselective C5-trifluoromethylation of quinolines (Scheme 83a). With CuBr2 as a catalyst and
PDF
Album
Review
Published 23 Sep 2019

Cyclopropanation–ring expansion of 3-chloroindoles with α-halodiazoacetates: novel synthesis of 4-quinolone-3-carboxylic acid and norfloxacin

  • Sara Peeters,
  • Linn Neerbye Berntsen,
  • Pål Rongved and
  • Tore Bonge-Hansen

Beilstein J. Org. Chem. 2019, 15, 2156–2160, doi:10.3762/bjoc.15.212

Graphical Abstract
  • the general yields of 3-carboxy-quinolines obtained in our initial study. Two previous observations in our lab, one made in our cyclopropanation–ring expansion study of indoles, and one made during our initial reactions of X-EDAs with olefins [35], gave us the clues for how to quickly improve the
PDF
Album
Supp Info
Letter
Published 13 Sep 2019

Regioselective Pd-catalyzed direct C1- and C2-arylations of lilolidine for the access to 5,6-dihydropyrrolo[3,2,1-ij]quinoline derivatives

  • Hai-Yun Huang,
  • Haoran Li,
  • Thierry Roisnel,
  • Jean-François Soulé and
  • Henri Doucet

Beilstein J. Org. Chem. 2019, 15, 2069–2075, doi:10.3762/bjoc.15.204

Graphical Abstract
  • so far (Scheme 1c). Herein, we report i) on the simple access to α-arylated 5,6-dihydropyrrolo[3,2,1-ij]quinolines using an air-stable Pd catalyst associated to an inexpensive base, ii) on the sequential access to α,β-diarylated 5,6-dihydropyrrolo[3,2,1-ij]quinolines containing identical or different
  • 58–74% yields. Then, the one-pot synthesis of α,β-di(hetero)arylated 5,6-dihydropyrrolo[3,2,1-ij]quinolines was attempted (Scheme 3). The use of a larger amount of aryl bromides (3 equiv) provided the target diarylated lilolidines 20–22 in good yields. Under these conditions, the mono-arylated
  • lilolidines were detected in very low yields by GC–MS analysis of the crude mixtures. The structure of 20 was confirmed by X-ray diffraction. As α-arylated lilolidines can be easily obtained under the reaction conditions shown in Scheme 2, the synthesis of α,β-diarylated 5,6-dihydropyrrolo[3,2,1-ij]quinolines
PDF
Album
Supp Info
Full Research Paper
Published 29 Aug 2019

Reactions of 2-carbonyl- and 2-hydroxy(or methoxy)alkyl-substituted benzimidazoles with arenes in the superacid CF3SO3H. NMR and DFT studies of dicationic electrophilic species

  • Dmitry S. Ryabukhin,
  • Alexey N. Turdakov,
  • Natalia S. Soldatova,
  • Mikhail O. Kompanets,
  • Alexander Yu. Ivanov,
  • Irina A. Boyarskaya and
  • Aleksander V. Vasilyev

Beilstein J. Org. Chem. 2019, 15, 1962–1973, doi:10.3762/bjoc.15.191

Graphical Abstract
  • reaction [14]. Recently, several hydroxyalkylation reactions followed by alkylation of arenes have been reported involving heterocycle-based superelectrophiles: pyridines, thiazoles, quinolines, isoquinolines, pyrazines, pyrazoles, imidazole and furans, bearing a formyl (carbonyl) group [15][16][17][18][19
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2019

Synthesis of ([1,2,4]triazolo[4,3-a]pyridin-3-ylmethyl)phosphonates and their benzo derivatives via 5-exo-dig cyclization

  • Aleksandr S. Krylov,
  • Artem A. Petrosian,
  • Julia L. Piterskaya,
  • Nataly I. Svintsitskaya and
  • Albina V. Dogadina

Beilstein J. Org. Chem. 2019, 15, 1563–1568, doi:10.3762/bjoc.15.159

Graphical Abstract
  • ]triazolo[4,3-a]pyridines was accessed through a 5-exo-dig-type cyclization of chloroethynylphosphonates and commercially available N-unsubstituted 2-hydrazinylpyridines. In addition, 3-methylphosphonylated [1,2,4]triazolo[4,3-a]quinolines and 1-methylphosphonylated [1,2,4]triazolo[3,4-a]isoquinolines were
  • ]triazolo[4,3-a]quinolines 13 and [1,2,4]triazolo[3,4-a]isoquinolines 14, respectively (Scheme 5). In the 31P NMR spectra the chemical shifts of the phosphorus nuclei in 13 and 14 are observed in the 18.40–22.75 ppm region. The 1H NMR spectra contain characteristic doublet signals of the methylene group in
  • ). Conclusion In conclusion, a series of new 3-methylphosphonylated [1,2,4]triazolo[4,3-a]pyridines, [1,2,4]triazolo[3,4-a]isoquinolines and 1-methylphosphonylated [1,2,4]triazolo[4,3-a]quinolines were synthesized through a catalyst-free 5-exo-dig-type cyclization of chloroethynylphosphonates and commercially
PDF
Album
Supp Info
Letter
Published 12 Jul 2019

Synthesis of pyrrolo[1,2-a]quinolines by formal 1,3-dipolar cycloaddition reactions of quinolinium salts

  • Anthony Choi,
  • Rebecca M. Morley and
  • Iain Coldham

Beilstein J. Org. Chem. 2019, 15, 1480–1484, doi:10.3762/bjoc.15.149

Graphical Abstract
  • Anthony Choi Rebecca M. Morley Iain Coldham Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK 10.3762/bjoc.15.149 Abstract Quinolinium salts, Q+-CH2-CO2Me Br− and Q+-CH2-CONMe2 Br− (where Q = quinoline), were prepared from quinolines. Deprotonation of these salts
  • with electron-poor alkenes occurs through a stepwise conjugate addition–cyclization process [23]. We were interested in the related quinolinium ylides that, on (formal) cycloaddition would provide pyrrolo[1,2-a]quinolines as products. These are tricyclic compounds consisting of a pyrrole ring fused
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2019

Quinolines from the cyclocondensation of isatoic anhydride with ethyl acetoacetate: preparation of ethyl 4-hydroxy-2-methylquinoline-3-carboxylate and derivatives

  • Nicholas G. Jentsch,
  • Jared D. Hume,
  • Emily B. Crull,
  • Samer M. Beauti,
  • Amy H. Pham,
  • Julie A. Pigza,
  • Jacques J. Kessl and
  • Matthew G. Donahue

Beilstein J. Org. Chem. 2018, 14, 2529–2536, doi:10.3762/bjoc.14.229

Graphical Abstract
  • electrophiles are reacted with the sodium enolate of ethyl acetoacetate, generated from sodium hydroxide, in warm N,N-dimethylacetamide resulting in the formation of substituted quinolines. A degradation–build-up strategy of the ethyl ester at the 3-position allowed for the construction of the α-hydroxyacetic
  • ], quinolines are only present in approximately 2% of FDA approved prescription pharmaceuticals [2]. Recently, 2,3,4-trisubstituted arylquinolines such as BI 224436 1 [3][4] and 2 [5][6] have been shown to exhibit inhibitory activity against HIV-1 integrase that is essential for viral replication through
  • regioselectivity issues and practical challenges associated with the aniline cyclocondensation (7→8), along with the scarcity of commercially available highly substituted quinolines, we sought to employ an entirely different tactic by utilizing 2H-3,1-benzoxazine-2,4(1H)-dione (isatoic anhydride) chemistry [16][17
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2018

Synthesis of indolo[1,2-c]quinazolines from 2-alkynylaniline derivatives through Pd-catalyzed indole formation/cyclization with N,N-dimethylformamide dimethyl acetal

  • Antonio Arcadi,
  • Sandro Cacchi,
  • Giancarlo Fabrizi,
  • Francesca Ghirga,
  • Antonella Goggiamani,
  • Antonia Iazzetti and
  • Fabio Marinelli

Beilstein J. Org. Chem. 2018, 14, 2411–2417, doi:10.3762/bjoc.14.218

Graphical Abstract
  • -catalyzed reaction of 15a with aldehydes as electrophiles resulted in the divergent formation of 11H-indolo[3,2-c]quinolines 17 (Scheme 5b) [32] through functionalization of C-3 position of the indole ring instead of N-1. The sequential reaction shown in Scheme 5, path a, probably occurs through cyclization
PDF
Album
Supp Info
Full Research Paper
Published 14 Sep 2018

Hydroarylations by cobalt-catalyzed C–H activation

  • Rajagopal Santhoshkumar and
  • Chien-Hong Cheng

Beilstein J. Org. Chem. 2018, 14, 2266–2288, doi:10.3762/bjoc.14.202

Graphical Abstract
  • styrenes, while alkylalkenes resulted in linear-selective products 35b. Similarly, quinolines 34a also underwent hydroarylation reaction with styrene to give C4-selective alkylated products 36 in good regioselectivity (Scheme 24b) [76]. 2.2 Co(III)-catalyzed hydroarylation of alkenes In 2013, Kanai
PDF
Album
Review
Published 29 Aug 2018

Applications of organocatalysed visible-light photoredox reactions for medicinal chemistry

  • Michael K. Bogdos,
  • Emmanuel Pinard and
  • John A. Murphy

Beilstein J. Org. Chem. 2018, 14, 2035–2064, doi:10.3762/bjoc.14.179

Graphical Abstract
  • nicotinamides to highly functionalised quinolines, such as the antimalarial drug quinine. The ability of this protocol to tolerate such highly functionalised molecules, with such a variety of functional groups present, really justifies the claims of the authors that this protocol is ideal for LSF in drug
PDF
Album
Review
Published 03 Aug 2018

Transition-metal-free [3 + 3] annulation of indol-2-ylmethyl carbanions to nitroarenes. A novel synthesis of indolo[3,2-b]quinolines (quindolines)

  • Michał Nowacki and
  • Krzysztof Wojciechowski

Beilstein J. Org. Chem. 2018, 14, 194–202, doi:10.3762/bjoc.14.14

Graphical Abstract
  • as anticancer agents [1][6][7] (Figure 1). Synthetic strategies towards indolo[3,2-b]quinolines have been reviewed [8]. These methodologies usually employ multistep procedures. Selected starting materials applicable to the synthesis of indolo[3,2-b]quinolines are presented in Scheme 1. Bis(2
  • pharmaceutical applications [19]. During our studies on the reactions of nitroarenes with nucleophiles [20][21][22][23], particularly carbanions, we were interested in a direct transformation of the formed σH-adducts into heterocyclic systems – indoles [21][23] and quinolines [21][22]. Quinolines were formed
  • heteroanalogues of benzyl carbanions to synthesise 11-substituted norcryptotackieine derivatives (indolo[2,3-b]quinolines) [26], benzothieno[2,3-b]quinolines [27], and other tetra- and pentacyclic polyazaarenes containing the quinoline system [28]. We elaborated two general variations of this methodology. In the
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

CF3SO2X (X = Na, Cl) as reagents for trifluoromethylation, trifluoromethylsulfenyl-, -sulfinyl- and -sulfonylation. Part 1: Use of CF3SO2Na

  • Hélène Guyon,
  • Hélène Chachignon and
  • Dominique Cahard

Beilstein J. Org. Chem. 2017, 13, 2764–2799, doi:10.3762/bjoc.13.272

Graphical Abstract
  • good oxidant for this reaction and allowed to carry out the trifluoromethylation exclusively at the α-position of the carbonyl group in the pyranone ring. The substrate scope was large and included 17 coumarins, 2 quinolines and 3 pyrimidinones. With coumarins bearing electron-donating groups on the
  • five cycles of this heterogeneous trifluoromethylation. In 2017, Lu, Weng and co-workers reported a protocol for the para-selective trifluoromethylation of naphthylamide 70, instead of the previously studied quinolines, with CF3SO2Na, tert-butyl hydroperoxide and Cu(OAc)2·H2O as oxidant (Scheme 46) [69
PDF
Album
Full Research Paper
Published 19 Dec 2017

Solvent-free copper-catalyzed click chemistry for the synthesis of N-heterocyclic hybrids based on quinoline and 1,2,3-triazole

  • Martina Tireli,
  • Silvija Maračić,
  • Stipe Lukin,
  • Marina Juribašić Kulcsár,
  • Dijana Žilić,
  • Mario Cetina,
  • Ivan Halasz,
  • Silvana Raić-Malić and
  • Krunoslav Užarević

Beilstein J. Org. Chem. 2017, 13, 2352–2363, doi:10.3762/bjoc.13.232

Graphical Abstract
  • reactions using Cu(II), Cu(I) and Cu(0) catalysts have been successfully implemented to provide novel 6-phenyl-2-(trifluoromethyl)quinolines with a phenyl-1,2,3-triazole moiety at O-4 of the quinoline core. Milling procedures proved to be significantly more efficient than the corresponding solution
  • click reaction to provide the target 6-phenyl-2-(trifluoromethyl)quinolines containing p-halogen-substituted and non-substituted phenyl-1,2,3-triazole unit attached at the O-4 position of the quinoline fragment. All triazole products have almost identical conformations in the solid state, with no
  • gray. c) Capped-stick representation of 5, showing the dimer formed by C–H∙∙∙N hydrogen bond (orange stippled lines). Synthetic procedures for preparation of p-halogen-substituted and non-substituted phenyl-1,2,3-triazole 6-phenyl-2-(trifluoromethyl)quinolines. Reaction conditions and yields for the
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2017

Solvent-free and room temperature synthesis of 3-arylquinolines from different anilines and styrene oxide in the presence of Al2O3/MeSO3H

  • Hashem Sharghi,
  • Mahdi Aberi,
  • Mohsen Khataminejad and
  • Pezhman Shiri

Beilstein J. Org. Chem. 2017, 13, 1977–1981, doi:10.3762/bjoc.13.193

Graphical Abstract
  • optimized conditions for the synthesis of quinolines, the reaction of 3,4-dimethylaniline (1, 1.0 mmol) and styrene oxide (2, 2.0 mmol) in an open atmosphere was chosen as a model reaction (Table 1). Control experiments showed that in the absence of Al2O3 and MeSO3H, no quinoline 3a was observed (Table 1
  • with styrene oxide to form the desired products (Table 2). In continuation of our study, aliphatic epoxides were also checked; unfortunately, they were not applicable for the preparation of quinolines. All novel and known compounds were characterized by their melting points, IR, 1H NMR, 13C NMR and
  • . Column chromatography was carried out on short columns of silica gel 60 (70–230 mesh) in glass columns. General procedure for the synthesis of quinolines in the presence of Al2O3/MeSO3H Aniline (1.0 mmol) and styrene oxide (2.0 mmol) were added to a mixture of MeSO3H (0.3 mL) and Al2O3 (0.1 g). The
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2017

Oxidative dehydrogenation of C–C and C–N bonds: A convenient approach to access diverse (dihydro)heteroaromatic compounds

  • Santanu Hati,
  • Ulrike Holzgrabe and
  • Subhabrata Sen

Beilstein J. Org. Chem. 2017, 13, 1670–1692, doi:10.3762/bjoc.13.162

Graphical Abstract
  • mechanisms (radical and metal-catalyzed) of the transformation. Ferric chloride-catalyzed, TBHP-oxidized synthesis of substituted quinazolinones and arylquinazolines. Iridium-catalyzed oxidative dehydrogenation of quinolines. Microwave-assisted synthesis of β-carboline with a catalytic amount of Pd/C in
PDF
Album
Review
Published 15 Aug 2017

Bifunctional organocatalysts for the asymmetric synthesis of axially chiral benzamides

  • Ryota Miyaji,
  • Yuuki Wada,
  • Akira Matsumoto,
  • Keisuke Asano and
  • Seijiro Matsubara

Beilstein J. Org. Chem. 2017, 13, 1518–1523, doi:10.3762/bjoc.13.151

Graphical Abstract
  • have recently demonstrated that bifunctional organocatalysts can also be applied to the asymmetric synthesis of axially chiral compounds (biaryls bearing isoquinoline N-oxides or quinolines and phenolic moieties) by translating a specific conformation, recognized by bifunctional organocatalysts, into
PDF
Album
Supp Info
Full Research Paper
Published 02 Aug 2017

Effect of the ortho-hydroxy group of salicylaldehyde in the A3 coupling reaction: A metal-catalyst-free synthesis of propargylamine

  • Sujit Ghosh,
  • Kinkar Biswas,
  • Suchandra Bhattacharya,
  • Pranab Ghosh and
  • Basudeb Basu

Beilstein J. Org. Chem. 2017, 13, 552–557, doi:10.3762/bjoc.13.53

Graphical Abstract
  • ], 3-aminobenzofurans [12], aminoindolizines [13], 2-aminoimidazoles [14], oxazolidinones [15], and quinolines [16] (Scheme 1). Because of diverse applications of propargylamine, several methods are developed among which the three–component reaction of aldehyde, amine and terminal alkyne, commonly
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2017

New approaches to organocatalysis based on C–H and C–X bonding for electrophilic substrate activation

  • Pavel Nagorny and
  • Zhankui Sun

Beilstein J. Org. Chem. 2016, 12, 2834–2848, doi:10.3762/bjoc.12.283

Graphical Abstract
  • the titration of L4 with TBAC [37]. Catalysts L3 and L4 were successfully applied to the asymmetric dearomatization of electron-deficient N-heteroarenes (Scheme 3). Various nitrogen-containing heterocycles such as pyridines [36], quinolines [38], isoquinolines [38], etc. were reacted with TrocCl to
  • 2008 the Bolm group explored the use of halogen bond donors in organocatalysis. They discovered that perfluorinated alkyl halides could activate 2-substituted quinolines toward reduction by Hantzsch ester (Scheme 15) [81]. These studies explored various C6 to C10 perfluorinated bromides and iodides. It
PDF
Album
Review
Published 23 Dec 2016

Reactions of N,3-diarylpropiolamides with arenes under superelectrophilic activation: synthesis of 4,4-diaryl-3,4-dihydroquinolin-2(1H)-ones and their derivatives

  • Larisa Yu. Gurskaya,
  • Diana S. Belyanskaya,
  • Dmitry S. Ryabukhin,
  • Denis I. Nilov,
  • Irina A. Boyarskaya and
  • Aleksander V. Vasilyev

Beilstein J. Org. Chem. 2016, 12, 950–956, doi:10.3762/bjoc.12.93

Graphical Abstract
  • very important class of heterocycles, which are used in chemistry, biology, medicine, and materials science. For instance, see a series of recent reviews on anti-malaria drugs containing a quinoline motif in the structure [1][2][3]. The synthesis of quinolines is an important task of organic chemistry
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2016

Synthesis of 2,1-benzisoxazole-3(1H)-ones by base-mediated photochemical N–O bond-forming cyclization of 2-azidobenzoic acids

  • Daria Yu. Dzhons and
  • Andrei V. Budruev

Beilstein J. Org. Chem. 2016, 12, 874–881, doi:10.3762/bjoc.12.86

Graphical Abstract
  • ], quinolines [9][10][11][12][13] and quinazolines [14][15][16]. Therefore, the search for new methods leading to 2,1-benzisoxazoles is of great interest. For the preparative synthesis of 2,1-benzisoxazoles, in addition to the traditional method based on the reductive heterocyclization of ortho-substituted
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2016

Base metal-catalyzed benzylic oxidation of (aryl)(heteroaryl)methanes with molecular oxygen

  • Hans Sterckx,
  • Johan De Houwer,
  • Carl Mensch,
  • Wouter Herrebout,
  • Kourosch Abbaspour Tehrani and
  • Bert U. W. Maes

Beilstein J. Org. Chem. 2016, 12, 144–153, doi:10.3762/bjoc.12.16

Graphical Abstract
  • , benzyldiazines and benzyl(iso)quinolines was successfully oxidized to the corresponding benzylic ketones using a copper or iron catalyst and molecular oxygen as the stoichiometric oxidant. Application of the protocol in API synthesis is exemplified by the alternative synthesis of a precursor to the antimalarial
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2016
Other Beilstein-Institut Open Science Activities