Search results

Search for "ynones" in Full Text gives 18 result(s) in Beilstein Journal of Organic Chemistry.

Synthetic approach to 2-alkyl-4-quinolones and 2-alkyl-4-quinolone-3-carboxamides based on common β-keto amide precursors

  • Yordanka Mollova-Sapundzhieva,
  • Plamen Angelov,
  • Danail Georgiev and
  • Pavel Yanev

Beilstein J. Org. Chem. 2023, 19, 1804–1810, doi:10.3762/bjoc.19.132

Graphical Abstract
  • of methods for their synthesis is a very active area of research. Recent contributions to the synthesis of 4-quinolones made use of phosphine-mediated redox cyclization of 1-(2-nitroaryl)prop-2-ynones [39], palladium-catalyzed carbonylative cyclization of 2-bromonitrobenzenes and alkynes [40], TsCl
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
PDF
Album
Review
Published 24 Apr 2023

Photoredox catalysis in nickel-catalyzed C–H functionalization

  • Lusina Mantry,
  • Rajaram Maayuri,
  • Vikash Kumar and
  • Parthasarathy Gandeepan

Beilstein J. Org. Chem. 2021, 17, 2209–2259, doi:10.3762/bjoc.17.143

Graphical Abstract
  • corresponds to the observed major isomer product (Figure 15). In a related transformation, Hong realized the exclusively α-selective hydroacylation of ynones, ynoates, and ynamides via photoredox nickel catalysis. Thus, the combination of nickel and iridium catalysts efficiently catalyzed the regioselective α
  • reaction, TIPS-protected ynones, ynoates, and ynamides smoothly transformed into the corresponding trisubstituted alkenes 63 in high regio- and stereoselectivities. A possible mechanism was proposed similar to the one shown in Figure 15 to account for the observed high regioselectivity. Allylation The
PDF
Album
Review
Published 31 Aug 2021

Synthetic reactions driven by electron-donor–acceptor (EDA) complexes

  • Zhonglie Yang,
  • Yutong Liu,
  • Kun Cao,
  • Xiaobin Zhang,
  • Hezhong Jiang and
  • Jiahong Li

Beilstein J. Org. Chem. 2021, 17, 771–799, doi:10.3762/bjoc.17.67

Graphical Abstract
  • ] cyclization. In 2020, Taylor and colleagues [26] proposed a reaction for the preparation of spirocyclic indoline derivative 47 from indolylynone 46 and thiophenol under blue-light irradiation (Scheme 16). An abundant range of products was given to test various indole-tethered ynones and thiols, confirming
PDF
Album
Review
Published 06 Apr 2021

CF3-substituted carbocations: underexploited intermediates with great potential in modern synthetic chemistry

  • Anthony J. Fernandes,
  • Armen Panossian,
  • Bastien Michelet,
  • Agnès Martin-Mingot,
  • Frédéric R. Leroux and
  • Sébastien Thibaudeau

Beilstein J. Org. Chem. 2021, 17, 343–378, doi:10.3762/bjoc.17.32

Graphical Abstract
  • . reported the acid-catalyzed mono- and diarylation of CF3-substituted α,β-ynones 152a [98], Wu et al. reported the one-pot two-step acid-catalyzed diarylation of trifluoroacetyl coumarins 152b [99], and Yuan et al. reported the acid-catalyzed diarylation of CF3-substituted cyclopropyl ketone 152c [100
PDF
Album
Review
Published 03 Feb 2021

Facile preparation and conversion of 4,4,4-trifluorobut-2-yn-1-ones to aromatic and heteroaromatic compounds

  • Takashi Yamazaki,
  • Yoh Nakajima,
  • Minato Iida and
  • Tomoko Kawasaki-Takasuka

Beilstein J. Org. Chem. 2021, 17, 132–138, doi:10.3762/bjoc.17.14

Graphical Abstract
  • -ones by the oxidation of the readily accessible corresponding propargylic alcohols as well as their utilization as Michael acceptors for the construction of aromatic and heteroaromatic compounds are reported. Keywords: CF3-containing propargylic alcohols; CF3-containing ynones; oxidation; pyrimidines
  • utilize 1 by way of a variety of routes [7][8][9][10][11][12][13][14]. Recently, we turned our attention to oxidized propargyl alcohols, namely ynones 2, because of the interesting structure with two strongly electron-withdrawing moieties, resulting in a high electrophilicity. However, only a few methods
  • . The crude mixture proved to be substantially pure, and thus 2c and 2d afforded appropriate analytical data, including NMR (1H, 13C, and 19F), IR, as well as high-resolution MS data. This process allowed us to obtain the required ynones 2 as long as the residue R was aromatic, while with an aliphatic
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2021

When metal-catalyzed C–H functionalization meets visible-light photocatalysis

  • Lucas Guillemard and
  • Joanna Wencel-Delord

Beilstein J. Org. Chem. 2020, 16, 1754–1804, doi:10.3762/bjoc.16.147

Graphical Abstract
PDF
Album
Review
Published 21 Jul 2020

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
  • enaminones 61 by conjugative addition of heteroarylamines 3 with α,β-ynones 60 (Scheme 20). Optimization of the reaction inferred that CuI with dimethylformamide (DMF) at 100 °C under air would be the best conditions for a maximum yield. The reaction viability was also tested without the isolation of product
PDF
Album
Review
Published 19 Jul 2019

Synthesis and biological evaluation of 1,2-disubstituted 4-quinolone analogues of Pseudonocardia sp. natural products

  • Stephen M. Geddis,
  • Teodora Coroama,
  • Suzanne Forrest,
  • James T. Hodgkinson,
  • Martin Welch and
  • David R. Spring

Beilstein J. Org. Chem. 2018, 14, 2680–2688, doi:10.3762/bjoc.14.245

Graphical Abstract
  • natural products. The chemistry developed towards the allylic alcohols 5 and 6, outlined in Scheme 1, seemed ideal to this end. A range of alkynes 10 could undergo Sonogashira coupling with the commercially available acid chloride 9. The resultant ynones 11 could then undergo conjugate addition with
  • resulted for 11b, which was attributed to difficulties in obtaining its precursor 10b with high purity which stemmed from its volatility. These ynones were then subjected to a conjugate addition with an assortment of primary amines 12a–f (Scheme 3). The reactions proceeded with excellent yield in all cases
  • natural product analogues. Modular coupling of alkynes 10 and amines 12 with commercially available acid chloride 9 was proposed to give 1,2-disubstituted quinolones 14. Sonagashira coupling of alkynes 10a and 10b with commercially available acid chloride 9 to give ynones 11a and 11b. Conjugate addition
PDF
Album
Supp Info
Letter
Published 19 Oct 2018

Stereoselective total synthesis and structural revision of the diacetylenic diol natural products strongylodiols H and I

  • Pamarthi Gangadhar,
  • Sayini Ramakrishna,
  • Ponneri Venkateswarlu and
  • Pabbaraja Srihari

Beilstein J. Org. Chem. 2018, 14, 2313–2320, doi:10.3762/bjoc.14.206

Graphical Abstract
  • concentrations [11]. There have been few contributions on the total synthesis of strongylodiols [12][13] employing alkynylation of an unsaturated aliphatic aldehyde catalyzed by Trost’s pro-phenol ligand [12][14], β-elimination of epoxy chloride [15], Noyori’s asymmetric reduction of ynones [16], diyne addition
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2018

Addition of dithi(ol)anylium tetrafluoroborates to α,β-unsaturated ketones

  • Yu-Chieh Huang,
  • An Nguyen,
  • Simone Gräßle,
  • Sylvia Vanderheiden,
  • Nicole Jung and
  • Stefan Bräse

Beilstein J. Org. Chem. 2018, 14, 515–522, doi:10.3762/bjoc.14.37

Graphical Abstract
  • that comparable reactions of α-alkyl or aryl-substitued dithiolanylium TFBs can be used for the reaction with ynones giving diene dithioacetals as compounds 18a and 18b in a related manner (Scheme 6). Conclusion The presented study shows that some of the current challenges concerning the addition of
  • chiral auxiliary and subsequent reduction of selected products. Furthermore, we extended the reaction to the addition of ynones to α-alkyl or aryl-substitued dithiolanylium TFBs showing their successful transformation to diene dithiolanes in two examples. One limitation of the procedure concerning the
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2018

NHC-catalyzed cleavage of vicinal diketones and triketones followed by insertion of enones and ynones

  • Ken Takaki,
  • Makoto Hino,
  • Akira Ohno,
  • Kimihiro Komeyama,
  • Hiroto Yoshida and
  • Hiroshi Fukuoka

Beilstein J. Org. Chem. 2017, 13, 1816–1822, doi:10.3762/bjoc.13.176

Graphical Abstract
  • -diketones and 1,2,3-triketones with enones and ynones have been investigated. The diketones gave α,β-double acylation products via unique Breslow intermediates isolable as acid salts, whereas the triketones formed stable adducts with the NHC instead of the coupling products. Keywords: Breslow intermediate
  • = C(O)R1) reacted with enones III in the presence of thiazolium carbene catalysts to give double acylation products IV in good yields [15]. If enones can be replaced by ynones III in the reaction with benzils, alkenes IV having three acyl moieties would be formed directly. Related products were
  • -diketones. We would like to report herein these results. Results and Discussion The reaction of benzil (1a) with various ynones 2 was carried out by use of thiazolium salt 3 under similar conditions to that with enones (Table 1) [15]. In the reaction of 1a with 1-phenylprop-2-yn-1-one (2a
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2017

Multicomponent reactions: A simple and efficient route to heterocyclic phosphonates

  • Mohammad Haji

Beilstein J. Org. Chem. 2016, 12, 1269–1301, doi:10.3762/bjoc.12.121

Graphical Abstract
  • shift, aromatized to vinylpyrazoles 234. Recently, the [3 + 2] cycloaddition of phosphonate azomethine ylides 235 with ynones 236 to give substituted 1H-pyrrol-2-ylphosphonates 237 has been described by Yu et al. (Scheme 48) [86]. The desired 1H-pyrrol-2-ylphosphonate 241 could also be obtained through
  • the three-component reaction of 4-chlorobenzaldehyde (238), aminomethylphosphonate 239 and ynones 240 in 57% yield (Scheme 49). 7 Reissert-type multicomponent reactions The traditional Reissert reaction is a one-pot treatment of quinoline (242) with acid chlorides 243 and KCN to afford Reissert
  • via the [3 + 2] cycloaddition of phosphonate azomethine ylides with ynones. Three-component synthesis of 1H-pyrrol-2-ylphosphonates. The classical Reissert reaction. One-pot three-component synthesis of N-phosphorylated isoquinolines. One-pot three-component synthesis of 1-acyl-1,2-dihydroquinoline-2
PDF
Album
Review
Published 21 Jun 2016

Recent advances in N-heterocyclic carbene (NHC)-catalysed benzoin reactions

  • Rajeev S. Menon,
  • Akkattu T. Biju and
  • Vijay Nair

Beilstein J. Org. Chem. 2016, 12, 444–461, doi:10.3762/bjoc.12.47

Graphical Abstract
  • yields and enantioselectivity (Scheme 17). It is noteworthy that the catalytically generated Breslow intermediates undergo selective 1,2-addition with ynones and the competing Stetter-type reactivity was not observed [33]. Aza-benzoin reactions In aza-benzoin reactions, the acyl anions generated from
PDF
Album
Correction
Review
Published 09 Mar 2016

Enantioselective additions of copper acetylides to cyclic iminium and oxocarbenium ions

  • Jixin Liu,
  • Srimoyee Dasgupta and
  • Mary P. Watson

Beilstein J. Org. Chem. 2015, 11, 2696–2706, doi:10.3762/bjoc.11.290

Graphical Abstract
  • solvent also affect the enantioselectivity, with iPr2N(n-Pr) and CH2Cl2 proving best. Notably, only 1,2-addition was observed. With respect to the alkyne, activated terminal acetylenes, such as ynones and propriolates, are best for this reaction. Unactivated alkynes give products in reasonable yields (63
PDF
Album
Review
Published 22 Dec 2015

4-Hydroxy-6-alkyl-2-pyrones as nucleophilic coupling partners in Mitsunobu reactions and oxa-Michael additions

  • Michael J. Burns,
  • Thomas O. Ronson,
  • Richard J. K. Taylor and
  • Ian J. S. Fairlamb

Beilstein J. Org. Chem. 2014, 10, 1159–1165, doi:10.3762/bjoc.10.116

Graphical Abstract
  • -ynones represents an intuitive and efficient route to vinyl compounds, and is well-established with a plethora of oxygen-based nucleophiles [19]. Addition of highly acidic coupling partners can be challenging, however, due to the low nucleophilicity of the conjugate base in which the electron density is
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2014

Amines as key building blocks in Pd-assisted multicomponent processes

  • Didier Bouyssi,
  • Nuno Monteiro and
  • Geneviève Balme

Beilstein J. Org. Chem. 2011, 7, 1387–1406, doi:10.3762/bjoc.7.163

Graphical Abstract
  • presence of Et3N and catalytic amounts of PdCl2(PPh3)2 and CuI. The resulting ynones 27 were then treated in situ with diversely substituted hydrazine derivatives to produce, upon microwave heating, a series of pyrazoles 28–30 (Scheme 15). As previously established for this type of cycloaddition, one of
  • are formed, they immediately react with hydrazine to form pyrazole by a specific rate acceleration in the one-pot process [16]. The Sonogashira cross-coupling of acid chlorides with terminal alkynes has also been demonstrated as a valuable tool to generate, in situ, ynones bearing a pendant amine
  • ynones were then treated in situ with sodium iodide and PTSA to yield 2-substituted N-Boc-4-iodopyrroles 32 in good overall yields. Interestingly, this product may be further transformed in situ into the corresponding N-Boc-4-alkynylpyrroles 33 by a further Sonogashira coupling that makes use of the
PDF
Album
Review
Published 10 Oct 2011

One-pot four-component synthesis of pyrimidyl and pyrazolyl substituted azulenes by glyoxylation–decarbonylative alkynylation–cyclocondensation sequences

  • Charlotte F. Gers,
  • Julia Rosellen,
  • Eugen Merkul and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2011, 7, 1173–1181, doi:10.3762/bjoc.7.136

Graphical Abstract
  • ; multicomponent reactions; ynones; Introduction Diversity-oriented synthesis has become an important field in organic chemistry, initiated by the increasing demand for new scaffolds for pharmaceuticals and biologically active compounds over the past decades [1][2][3]. Herein, multicomponent reactions adopt a
  • novel concept combines the unique reactivity patterns of transition metal catalysis with fundamental organic reactivity, in a sequential or consecutive fashion. Over the years, we have contributed to this concept through Pd/Cu-catalyzed accesses to enones and ynones and the in situ transformation of
  • one-pot four-component syntheses toward pyrimidyl- and pyrazolylazulenes. Results and Discussion Recently, we reported a three-component synthesis leading to the formation of ynones by a conceptually novel glyoxylation–decarbonylative Sonogashira coupling sequence (Scheme 2) [47]. The Lewis acid free
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2011
Other Beilstein-Institut Open Science Activities