Search results

Search for "Suzuki" in Full Text gives 363 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Mono or double Pd-catalyzed C–H bond functionalization for the annulative π-extension of 1,8-dibromonaphthalene: a one pot access to fluoranthene derivatives

  • Nahed Ketata,
  • Linhao Liu,
  • Ridha Ben Salem and
  • Henri Doucet

Beilstein J. Org. Chem. 2024, 20, 427–435, doi:10.3762/bjoc.20.37

Graphical Abstract
  • palladium-catalyzed direct intermolecular arylation, followed by a direct intramolecular arylation step. As the C–H bond activation of several benzene derivatives remains very challenging, the preparation of fluoranthenes from 1,8-dibromonaphthalene via Suzuki coupling followed by intramolecular C–H
  • contrast, only a few examples of fluoranthene backbone preparation by Pd-catalyzed C–H arylation have been reported. Some examples of the preparation of this skeleton by Suzuki coupling followed by intramolecular C–H coupling have been described [18][19][20][21][22][23][24]. In 2017, Metin, Türkmen and co
  • intermolecular Suzuki coupling with an intramolecular C–H arylation, it should be possible to access numerous fluoranthene derivatives from commercially available 1,8-dibromobenzene in a single manipulation (Scheme 1d). Here, we describe i) conditions enabling the annulative π-extension of 1,8-dibromonaphthalene
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2024

Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters

  • Carlos R. Azpilcueta-Nicolas and
  • Jean-Philip Lumb

Beilstein J. Org. Chem. 2024, 20, 346–378, doi:10.3762/bjoc.20.35

Graphical Abstract
  • decarboxylative cross-coupling (DCC) of NHPI esters with organometallic reagents, resembling classic Kumada, Negishi, and Suzuki couplings, has been enabled by nickel (Ni), cobalt (Co), iron (Fe), and copper (Cu) catalysts [84][85][86][87][88][89][90][91] (Scheme 23A). The typical mechanism begins by
PDF
Album
Perspective
Published 21 Feb 2024

Synthesis of π-conjugated polycyclic compounds by late-stage extrusion of chalcogen fragments

  • Aissam Okba,
  • Pablo Simón Marqués,
  • Kyohei Matsuo,
  • Naoki Aratani,
  • Hiroko Yamada,
  • Gwénaël Rapenne and
  • Claire Kammerer

Beilstein J. Org. Chem. 2024, 20, 287–305, doi:10.3762/bjoc.20.30

Graphical Abstract
  • corresponding boronic acid 9 and a Suzuki–Miyaura cross-coupling between 8 and 9 gave rise to dimer 10, followed by the oxidation of both acenaphthene units into 1,8-naphthalic anhydrides. Installation of the thiepine ring was achieved by a double nucleophilic aromatic substitution induced by sodium sulfide
  • corresponding bis(thiophenyl) thioether, which then underwent successive bromination and iodination to give intermediate 18. Next, a two-fold Suzuki–Miyaura cross-coupling occurring chemoselectively on the iodinated positions allowed the symmetric extension of the hydrocarbon scaffold, with the insertion of two
  • thiepine via a two-fold Suzuki–Miyaura cross-coupling with 1,2-phenylenediboronic pinacol ester. The resulting S-doped extended tribenzothiepine 21 proved stable under ambient conditions for several months and exhibited good solubility in common organic solvents, which is ascribed to the boat-shape
PDF
Album
Review
Published 15 Feb 2024
Graphical Abstract
  • through scanning tunneling microscopy [85]. For TCBDs bearing unsubstituted anilino (p-H2NC6H4–) groups, their conversion into the p-iodophenyl derivatives via the Sandmeyer reaction and subsequent post-functionalization via the Suzuki and Sonogashira coupling reactions are achieved [86]. In the reaction
PDF
Album
Review
Published 22 Jan 2024

Controlling the reactivity of La@C82 by reduction: reaction of the La@C82 anion with alkyl halide with high regioselectivity

  • Yutaka Maeda,
  • Saeka Akita,
  • Mitsuaki Suzuki,
  • Michio Yamada,
  • Takeshi Akasaka,
  • Kaoru Kobayashi and
  • Shigeru Nagase

Beilstein J. Org. Chem. 2023, 19, 1858–1866, doi:10.3762/bjoc.19.138

Graphical Abstract
  • Yutaka Maeda Saeka Akita Mitsuaki Suzuki Michio Yamada Takeshi Akasaka Kaoru Kobayashi Shigeru Nagase Department of Chemistry, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan Department of Chemistry, Josai University, Sakado, Saitama 350-0295, Japan Tsukuba Advanced Research Alliance
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2023

Thienothiophene-based organic light-emitting diode: synthesis, photophysical properties and application

  • Recep Isci and
  • Turan Ozturk

Beilstein J. Org. Chem. 2023, 19, 1849–1857, doi:10.3762/bjoc.19.137

Graphical Abstract
  • 4-bromo-N,N-diphenylaniline (5) with n-butyllithium at −78 °C and addition of 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane. The Suzuki-coupling reaction of TT 4 with borolane 6 produced the intermediate 7 in 81% yield. The target D–π–A-type fluorophore, DMB-TT-TPA (8), was produced by
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2023

Substituent-controlled construction of A4B2-hexaphyrins and A3B-porphyrins: a mechanistic evaluation

  • Seda Cinar,
  • Dilek Isik Tasgin and
  • Canan Unaleroglu

Beilstein J. Org. Chem. 2023, 19, 1832–1840, doi:10.3762/bjoc.19.135

Graphical Abstract
  • mentioned by Osuka and Suzuki [13], besides the formation of A3B-porphyrins. On the other hand, electron-withdrawing but less bulky (4-trifluoromethylphenyl) groups on tripyrrane 5 led to predominant formation of the A3B-porphyrin even when it was reacted with mono-, di-, or penta-substituted aryl N
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

A deep-red fluorophore based on naphthothiadiazole as emitter with hybridized local and charge transfer and ambipolar transporting properties for electroluminescent devices

  • Suangsiri Arunlimsawat,
  • Patteera Funchien,
  • Pongsakorn Chasing,
  • Atthapon Saenubol,
  • Taweesak Sudyoadsuk and
  • Vinich Promarak

Beilstein J. Org. Chem. 2023, 19, 1664–1676, doi:10.3762/bjoc.19.122

Graphical Abstract
  • )diboron catalyzed by Pd(dpf)Cl2/KOAc. Finally, TPECNz was obtained as red solid in a reasonable yield by a Suzuki-type cross-coupling reaction between 3 and 4,9-dibromonaphtho[2,3-c][1,2,5]thiadiazole. The chemical structure and purity of compound 3 were verified by 1H NMR, 13C NMR, and high-resolution
PDF
Album
Supp Info
Full Research Paper
Published 03 Nov 2023

Synthesis and biological evaluation of Argemone mexicana-inspired antimicrobials

  • Jessica Villegas,
  • Bryce C. Ball,
  • Katelyn M. Shouse,
  • Caleb W. VanArragon,
  • Ashley N. Wasserman,
  • Hannah E. Bhakta,
  • Allen G. Oliver,
  • Danielle A. Orozco-Nunnelly and
  • Jeffrey M. Pruet

Beilstein J. Org. Chem. 2023, 19, 1511–1524, doi:10.3762/bjoc.19.108

Graphical Abstract
  • complete decomposition. With the desired naphthylamines in hand, we were able to complete our synthesis of four chelerythrine variants as shown in Scheme 7. After N-formylation providing intermediates 11 and 12 in good yield, a three-step sequence was performed: Suzuki coupling of the aryl bromide with one
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2023

Consecutive four-component synthesis of trisubstituted 3-iodoindoles by an alkynylation–cyclization–iodination–alkylation sequence

  • Nadia Ledermann,
  • Alae-Eddine Moubsit and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2023, 19, 1379–1385, doi:10.3762/bjoc.19.99

Graphical Abstract
  • electrophilic trapping of the intermediary indole anion with alkyl halides provides a concise one-pot synthesis of 3-iodoindoles. The latter are valuable substrates for Suzuki arylations, which are exemplified with the syntheses of four derivatives, some of them are blue emitters in solution and in the solid
  • alkynyl-substituted 3-iodoindole 6 as product in 42% isolated yield in the sense of a pseudo-five-component reaction (Scheme 3). Finally, the 3-iodoindole 5a and arylboronic acids 7 were employed in a standard Suzuki protocol with cesium carbonate as a base to give rise to the formation of 1,2,3
  • N-iodosuccinimide prior to N-alkylation to give substituted 3-iodoindoles in a concise consecutive four-component fashion in modest to good yields. These target compounds are versatile building blocks for instance for a Suzuki coupling to give 1-alkyl-2,3-diarylindoles that can be of particular
PDF
Album
Supp Info
Full Research Paper
Published 14 Sep 2023

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • Negishi reaction (Zn) [1], Stille reaction (Sn) [2], Kumada reaction (Mg) [3], and Suzuki reaction (Pd) [4] (Scheme 1a). However, these coupling reactions involve a metal exchange step that generates a considerable amount of reaction waste, such as metal salts, which are not environmentally friendly. To
PDF
Album
Review
Published 06 Sep 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
  • . Notably, carbonylative amidation of a borylated aryl bromide to 26d proceeded well, where a Pd-catalyzed carbonylative amidation reaction would be plagued by undesired Suzuki coupling. Several secondary cyclic and acyclic amines, as well as primary amines were successfully employed as amine coupling
PDF
Album
Review
Published 28 Jul 2023

Construction of hexabenzocoronene-based chiral nanographenes

  • Ranran Li,
  • Di Wang,
  • Shengtao Li and
  • Peng An

Beilstein J. Org. Chem. 2023, 19, 736–751, doi:10.3762/bjoc.19.54

Graphical Abstract
  • ]azepine and tetrabromothiophene-S,S-dioxide, followed by oxidative aromatization in the presence DDQ to afford compound 25 in an overall 75% yield. Suzuki−Miyaura cross-coupling reaction of compound 25 with (4-ethylphenyl)boronic acid in the presence of Pd(CH3CN)2Cl2, SPhos, and K3PO4 then furnished the
  • the prefused building block in a 49% yield. Then naphthalene and phenanthrene residues were introduced into compound 33 through Suzuki coupling reaction, the corresponding precursors 34 and 36 were obtained respectively in high yields. The final cyclodehydrogenation using DDQ and TfOH proceeded
  • benzo[b]naphtho[2,3-f]oxepine 66 with tetrabromothiophene-S,S-dioxide in toluene followed by oxidative aromatization in the presence of DDQ afforded tetrabrominated aromatics 67 in an 81% yield. Subsequently, fourfold Suzuki–Miyaura cross-coupling of polybrominated compound 67 was performed, affording
PDF
Album
Review
Published 30 May 2023

Strategies in the synthesis of dibenzo[b,f]heteropines

  • David I. H. Maier,
  • Barend C. B. Bezuidenhoudt and
  • Charlene Marais

Beilstein J. Org. Chem. 2023, 19, 700–718, doi:10.3762/bjoc.19.51

Graphical Abstract
  • . through a multicomponent reaction system [57]. The authors provided a series of substituted derivatives through Pd/Rh-catalysed domino coupling. The reaction proceeded via a Suzuki coupling, followed by an in situ Buchwald–Hartwig amination. The authors reported moderate to good yields in a series with
  • electron-donating and electron-withdrawing groups, as well as N-aryl and N-alkylamines (Scheme 15). Lam et al. [58] expanded on the multicomponent method to form substituted dihydropyridobenzazepines 80–82 wherein vinylpyridines 77 are coupled with boronate ester anilines 78 in a Suzuki reaction
  • towards dibenzo[b,f]azepines and other dibenzo[b,f]heteropines, and the functionalisation thereof. Modern metal-catalyzed methods to introduce the C–C bridge include the Heck reaction, the Sonogashira reaction, Suzuki coupling and ring-closing metathesis, whereas Buchwald–Hartwig type reactions and Ullman
PDF
Album
Review
Published 22 May 2023

Total synthesis of insect sex pheromones: recent improvements based on iron-mediated cross-coupling chemistry

  • Eric Gayon,
  • Guillaume Lefèvre,
  • Olivier Guerret,
  • Adrien Tintar and
  • Pablo Chourreu

Beilstein J. Org. Chem. 2023, 19, 158–166, doi:10.3762/bjoc.19.15

Graphical Abstract
  • reactions, which witnessed considerable development in the last two decades [14], several cross-coupling methodologies involving soft nucleophiles, such as iron-mediated Suzuki–Miyaura cross-couplings, being reported [15]. The introduction of alkyl–alkenyl linkage by means of iron-catalyzed cross-coupling
PDF
Album
Perspective
Published 14 Feb 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • –cyclization of common synthetic intermediates 94 and 95 (Scheme 8). Compound 94 was obtained in three steps, with the key step being the Suzuki–Miyaura coupling of appropriately functionalized precursors 91 and 92 using Romo and co-worker’s protocol [52]. Reaction of 94 under PPTS acidic conditions initiated
  • substitution for the minimization of 1,3-allylic strain to enable Suzuki coupling for biaryl formation as a single atropisomer. The optimized conditions for this transformation utilize Buchwald’s catalyst (SPhos and Pd-based G2 precatalyst) in conjunction with K3PO4. With DBCOD bearing carboxylic acid handles
PDF
Album
Review
Published 02 Jan 2023

Inline purification in continuous flow synthesis – opportunities and challenges

  • Jorge García-Lacuna and
  • Marcus Baumann

Beilstein J. Org. Chem. 2022, 18, 1720–1740, doi:10.3762/bjoc.18.182

Graphical Abstract
  • obtain the pure compound that met the requirements (>99.5%) [41]. Another very recent report which couples a Suzuki–Miyaura reaction with inline purification, uses capture-SMB technology as its purification approach [42] (Table 2, entry 2). The crude material is directed into two twin C-18 columns that
  • reported by Pitts and collaborators. This study achieves full removal of metal species after common homogenous catalytic reactions such as a Suzuki–Miyaura reaction, Sonogashira reaction or hydrogenation mediated by Wilkinson’s catalyst [84]. Other interesting examples to remove transition metals in
  • successfully coupled to a Suzuki–Miyaura reaction [119]. Crystallization was identified as a suitable purification technique to separate products from unreacted starting materials while avoiding metal contamination. Water was used as antisolvent and two mixing units were needed in the crystallization process
PDF
Album
Perspective
Published 16 Dec 2022

Total synthesis of grayanane natural products

  • Nicolas Fay,
  • Rémi Blieck,
  • Cyrille Kouklovsky and
  • Aurélien de la Torre

Beilstein J. Org. Chem. 2022, 18, 1707–1719, doi:10.3762/bjoc.18.181

Graphical Abstract
  • diastereoselectivity in 58% on a 3 g scale. Subsequently, vinyl halide 48 was converted to diene 50 by Suzuki coupling with potassium vinyltrifluoroborate (49) in 90% yield (Scheme 8). The C7–C8 bond formation from a bridgehead carbocation was a real challenge to close the 7-membered ring. To achieve this, the
PDF
Album
Review
Published 12 Dec 2022

Simple synthesis of multi-halogenated alkenes from 2-bromo-2-chloro-1,1,1-trifluoroethane (halothane)

  • Yukiko Karuo,
  • Atsushi Tarui,
  • Kazuyuki Sato,
  • Kentaro Kawai and
  • Masaaki Omote

Beilstein J. Org. Chem. 2022, 18, 1567–1574, doi:10.3762/bjoc.18.167

Graphical Abstract
  • presence of KOH. In this reaction, halothane plays a key role in the construction of highly halogenated and structurally intriguing products. The tri-halogenated alkenyl ether has potential applications in organic chemistry, e.g., in Suzuki–Miyaura or Sonogashira cross-coupling reactions. Further
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2022

Electrogenerated base-promoted cyclopropanation using alkyl 2-chloroacetates

  • Kouichi Matsumoto,
  • Yuta Hayashi,
  • Kengo Hamasaki,
  • Mizuki Matsuse,
  • Hiyono Suzuki,
  • Keiji Nishiwaki and
  • Norihito Kawashita

Beilstein J. Org. Chem. 2022, 18, 1116–1122, doi:10.3762/bjoc.18.114

Graphical Abstract
  • Kouichi Matsumoto Yuta Hayashi Kengo Hamasaki Mizuki Matsuse Hiyono Suzuki Keiji Nishiwaki Norihito Kawashita Department of Chemistry, School of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan Department of Pharmaceutical Sciences, Faculty of Pharmacy
PDF
Album
Supp Info
Letter
Published 29 Aug 2022

Introducing a new 7-ring fused diindenone-dithieno[3,2-b:2',3'-d]thiophene unit as a promising component for organic semiconductor materials

  • Valentin H. K. Fell,
  • Joseph Cameron,
  • Alexander L. Kanibolotsky,
  • Eman J. Hussien and
  • Peter J. Skabara

Beilstein J. Org. Chem. 2022, 18, 944–955, doi:10.3762/bjoc.18.94

Graphical Abstract
  • [34], dibromodithienothiophene 24 is lithiated with n-butyllithium at −90 °C, and the resulting species is reacted in situ with triisopropyl borate. After aqueous workup, dithieno[3,2-b:2’,3’-d]thiophene-2,6-diylboronic acid (25) is obtained, enabling subsequent Suzuki–Miyaura cross-coupling [36
  • previously by other groups [38][39], however, we here use a different protocol. Intermediates 25 or 26 were reacted in Suzuki–Miyaura couplings [36] with commercially available methyl 5-bromo-2-iodobenzoate [40], to obtain the key intermediate dimethyl 6,6’-(dithieno[3,2-b:2’,3’-d]thiophene-2,6-diyl)bis(3
  • Information File 1. According to the literature [41], Aliquat 336® can be added to Suzuki–Miyaura reactions. Here, this did not improve the yield, but decreased its fluctuation from batch to batch. After sufficient amounts of intermediate 27 were isolated, attempts for ring-closure were made. Initial attempts
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2022

Palladium-catalyzed solid-state borylation of aryl halides using mechanochemistry

  • Koji Kubota,
  • Emiru Baba,
  • Tamae Seo,
  • Tatsuo Ishiyama and
  • Hajime Ito

Beilstein J. Org. Chem. 2022, 18, 855–862, doi:10.3762/bjoc.18.86

Graphical Abstract
  • organic materials, typically through Suzuki–Miyaura coupling [1][2][3][4][5][6][7]. The palladium-catalyzed boryl substitution of aryl halides with boron reagents, termed Miyaura–Ishiyama borylation, is an efficient method for synthesizing arylboronates with high functional group compatibility [8][9][10
  • transformations. Thus far, mechanochemical palladium-catalyzed cross-coupling reactions such as Suzuki–Miyaura [34][35][36][37][38][39][40][41][42][43][44][45][46][47], Buchwald–Hartwig [48][49][50][51][52], Sonogashira [53][54][55][56], Negishi [57], Mizoroki–Heck [58][59][60], and C–S bond-forming [61
PDF
Album
Supp Info
Letter
Published 18 Jul 2022

An isoxazole strategy for the synthesis of 4-oxo-1,4-dihydropyridine-3-carboxylates

  • Timur O. Zanakhov,
  • Ekaterina E. Galenko,
  • Mikhail S. Novikov and
  • Alexander F. Khlebnikov

Beilstein J. Org. Chem. 2022, 18, 738–745, doi:10.3762/bjoc.18.74

Graphical Abstract
  • 11a,c,e–g with NIS/TFA [30]. The reaction of 11d gave the product of double iodination 12c. 4-Iodoisoxazoles 12a,b,d–f were transformed into 3,4-substituted isoxazoles 13a–g by Suzuki reaction using a published procedure with some modifications [31]. Isoxazoles 1, except for isoxazole 1a, were
  • )-one 14 in 89% yield. The reaction of pyridone 2e with PBr3 afforded methyl 4-bromo-6-(4-fluorophenyl)-2-phenylnicotinate (15) in 80% yield. The latter was employed in the Suzuki reaction in the high-yield synthesis of 2,4,6-triaryl-substituted nicotinate 16. The nitrogen of 2,3,4,6-tetrasubstituted
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2022

Inductive heating and flow chemistry – a perfect synergy of emerging enabling technologies

  • Conrad Kuhwald,
  • Sibel Türkhan and
  • Andreas Kirschning

Beilstein J. Org. Chem. 2022, 18, 688–706, doi:10.3762/bjoc.18.70

Graphical Abstract
  • flow conditions. In these reactions, the leaching of palladium was as low as 34 ppm for Suzuki–Miyaura reactions and 100 ppm for Heck reactions. Importantly, the functionalized nanoparticles could be reused several times without observing a decrease in catalytic activity. 3.2.4 Multistep processes: The
PDF
Album
Review
Published 20 Jun 2022

Borylated norbornadiene derivatives: Synthesis and application in Pd-catalyzed Suzuki–Miyaura coupling reactions

  • Robin Schulte and
  • Heiko Ihmels

Beilstein J. Org. Chem. 2022, 18, 368–373, doi:10.3762/bjoc.18.41

Graphical Abstract
  • -dioxaborolane was prepared and shown to be a suitable substrate for Pd-catalyzed Suzuki–Miyaura coupling reactions with selected haloarenes. It was demonstrated exemplarily that the novel monosubstituted 2-(1-naphthyl)norbornadiene, that is accessible through this route, is transformed to the corresponding
  • derivatives may be metalated in a Li–halogen exchange reaction [27]. In another versatile approach, arylation and alkenylation reactions of the norbornadiene may be accomplished with a Suzuki–Miyaura coupling reaction. In this case, halogenated norbornadienes react with arylboronic acids or their esters to
  • the corresponding aryl-substituted norbornadienes under optimized conditions [28][29][30][31]. To the best of our knowledge, however, no borylated norbornadiene derivatives have been employed in Suzuki–Miyaura coupling reactions so far, although this synthetic route appears to be a useful
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2022
Other Beilstein-Institut Open Science Activities