Search results

Search for "lithium" in Full Text gives 440 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Nucleofugal behavior of a β-shielded α-cyanovinyl carbanion

  • Rudolf Knorr and
  • Barbara Schmidt

Beilstein J. Org. Chem. 2018, 14, 3018–3024, doi:10.3762/bjoc.14.281

Graphical Abstract
  • with those of 7–9. Complete NMR assignments for the 2-hydroxyadamantan-2-yl part of 13 were achieved with the two-dimensional NOESY and HSQC techniques at rt. Except for the OH signal, all other resonances were changed only insignificantly on cooling to −60 °C. Cleavage of 13 via the lithium alkoxide
  • widths at −45 °C. Formation of the primary lithium alkoxide 16 (Scheme 4) was shown to be readily reversible as follows. Without protolysis and work-up of the green-colored solution, 16 was kept in THF at rt for 30 min and then treated with t-BuCH=O (4; 1.5 equiv); after a further period of 2 hours at rt
  • ; this provided a first evidence for the retro-addition process with an alkenylmetal intermediate. These fissions were slow in case of the magnesium alkoxide but rapid for the lithium or potassium alkoxides at ambient temperatures. (iii) The alternative trapping [3] of the carbonyl component by means of
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2018

1,8-Bis(dimethylamino)naphthyl-2-ketimines: Inside vs outside protonation

  • A. S. Antonov,
  • A. F. Pozharskii,
  • P. M. Tolstoy,
  • A. Filarowski and
  • O. V. Khoroshilova

Beilstein J. Org. Chem. 2018, 14, 2940–2948, doi:10.3762/bjoc.14.273

Graphical Abstract
  • Synthesis of DMAN-ortho-ketimines and their cations Target compounds 4a–7a were synthesised by techniques previously developed in our laboratory (Scheme 4) [7][8]. Compounds 4a–6a were obtained by the treatment of the ortho-lithium derivative 8 with the corresponding nitrile (path a). Unfortunately, the
PDF
Album
Supp Info
Full Research Paper
Published 28 Nov 2018

Unnatural α-amino ethyl esters from diethyl malonate or ethyl β-bromo-α-hydroxyiminocarboxylate

  • Eloi P. Coutant,
  • Vincent Hervin,
  • Glwadys Gagnot,
  • Candice Ford,
  • Racha Baatallah and
  • Yves L. Janin

Beilstein J. Org. Chem. 2018, 14, 2853–2860, doi:10.3762/bjoc.14.264

Graphical Abstract
  • the stronger lithium diisopropylamide. We do not have an explanation for this observation, although such oximation was achieved (in a low yield) when starting from the phenyl-bearing analogue 36 as described below. We suggest a somehow forbidding cation chelation by the oxygen of the furan ring which
  • slightly different approach was used for the preparation of the even more hindered β,β-dimethyl aminoester 41. Treatment of the monoester 39 [12][13] with lithium diisopropylamide and isoamyl nitrite overnight was once again not really successful as a rather poor 15% yield of the corresponding α
  • ester 2af were of (only) 56% and 54%, respectively. Later on, when using a 1:1 proportion of compounds 47 and 48af, a slightly improved yield of 50% was achieved when switching from ammonium bicarbonate to lithium carbonate (note d in Table 2) or in the case of the preparation of compound 2ag switching
PDF
Album
Supp Info
Full Research Paper
Published 16 Nov 2018

Synthesis of unnatural α-amino esters using ethyl nitroacetate and condensation or cycloaddition reactions

  • Glwadys Gagnot,
  • Vincent Hervin,
  • Eloi P. Coutant,
  • Sarah Desmons,
  • Racha Baatallah,
  • Victor Monnot and
  • Yves L. Janin

Beilstein J. Org. Chem. 2018, 14, 2846–2852, doi:10.3762/bjoc.14.263

Graphical Abstract
  • improve this transformation (trials with manganese(III) acetate were not successful either). We then resorted to a different approach to prepare the oxazole-bearing α-amino ester 36 from 2,4,5-trimethyloxazole (33). Deprotonation of this compound was achieved using lithium diisopropylamide (LDA) and this
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2018
Graphical Abstract
  • retigeranic acids, the norbornene derivative 16 was chosen. Addition of lithium (trimethylsilyl)acetylide to the lactol 5 followed by desilylation by using methanolic K2CO3 afforded diol 15 (Scheme 4). The primary hydroxy group in compound 15 was selectively protected to produce the silyl ether 16 in 95
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2018

Transition metal-free oxidative and deoxygenative C–H/C–Li cross-couplings of 2H-imidazole 1-oxides with carboranyl lithium as an efficient synthetic approach to azaheterocyclic carboranes

  • Lidia A. Smyshliaeva,
  • Mikhail V. Varaksin,
  • Pavel A. Slepukhin,
  • Oleg N. Chupakhin and
  • Valery N. Charushin

Beilstein J. Org. Chem. 2018, 14, 2618–2626, doi:10.3762/bjoc.14.240

Graphical Abstract
  • -oxides 1a–d and carboranyl lithium 2. The reactions were carried out in accordance with the optimized coupling conditions according to the "addition–elimination" SNH(AE) or "addition–oxidation" SNH(AO) pathways (Table 1 and Table 2). Optimization of the reaction conditions for the C–H/C–Li cross-coupling
PDF
Album
Supp Info
Letter
Published 12 Oct 2018

Quinolines from the cyclocondensation of isatoic anhydride with ethyl acetoacetate: preparation of ethyl 4-hydroxy-2-methylquinoline-3-carboxylate and derivatives

  • Nicholas G. Jentsch,
  • Jared D. Hume,
  • Emily B. Crull,
  • Samer M. Beauti,
  • Amy H. Pham,
  • Julie A. Pigza,
  • Jacques J. Kessl and
  • Matthew G. Donahue

Beilstein J. Org. Chem. 2018, 14, 2529–2536, doi:10.3762/bjoc.14.229

Graphical Abstract
  • heterocycle at position 4 is installed by Suzuki coupling with iodide 3a that is synthesized in three steps from ethyl aryl oxalate 4a. The α-ketoester side chain at position 3 was installed by selective halogen-metal exchange of iodide 5a with isopropylmagnesium chloride lithium chloride complex followed by
  • tartrate. Subsequent oxidation of the primary alcohol to the aldehyde 15 was accomplished with the pyridine sulfur trioxide complex in 52% yield over two-steps [29]. The carbon atom at the acid oxidation state was installed by addition of trimethylsilyl cyanide to the aldehyde 15 in the presence of lithium
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2018

Stereoselective total synthesis and structural revision of the diacetylenic diol natural products strongylodiols H and I

  • Pamarthi Gangadhar,
  • Sayini Ramakrishna,
  • Ponneri Venkateswarlu and
  • Pabbaraja Srihari

Beilstein J. Org. Chem. 2018, 14, 2313–2320, doi:10.3762/bjoc.14.206

Graphical Abstract
  • lithium(trimethylsilyl)acetylide to get the coupled product 24. The latter compound on further treatment with K2CO3 in MeOH [26] furnished the desilylated propargylic alcohol 19 (Scheme 2). The copper(I)-catalyzed Cadiot–Chodkiewicz [27] cross-coupling reaction between bromoalkyne 18 [28] and terminal
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2018

Dynamic light scattering studies of the effects of salts on the diffusivity of cationic and anionic cavitands

  • Anthony Wishard and
  • Bruce C. Gibb

Beilstein J. Org. Chem. 2018, 14, 2212–2219, doi:10.3762/bjoc.14.195

Graphical Abstract
  • titration with various halide salts. The fifteen salts studied were a matrix of the alkali metal cations Li+, Na+, K+, and Cs+ in combination with the halides F− through I−, the one omission being poorly soluble lithium fluoride (maximum solubility = 0.134 g mL−1). Unsurprisingly, given the pKa values of
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2018

β-Hydroxy sulfides and their syntheses

  • Mokgethwa B. Marakalala,
  • Edwin M. Mmutlane and
  • Henok H. Kinfe

Beilstein J. Org. Chem. 2018, 14, 1668–1692, doi:10.3762/bjoc.14.143

Graphical Abstract
  • weakness it required long reaction times (5 days). In 1997, Shibasaki and colleagues reported a gallium-lithium bis(binaphthoxide) complex 43, easily prepared from GaCl3, (R)-binaphthol and butyllithium in THF, as a catalyst for the asymmetric opening of symmetrical epoxides in the presence of 4 Å
  • ranged from –78 °C to room temperature. The use of amines, alcohols as well as alkyl and arylthiols as nucleophiles failed to provide the corresponding products. A year later, Antilla and co-workers found lithium-binol phosphate 64 to be an efficient catalyst for the desymmetrization of meso-epoxides
  • complex. Enantioselective ring-opening reaction of stilbene oxides with ArSH catalyzed by a C2-symmetric chiral bipyridyldiol–titanium complex. Asymmetric desymmetrization of meso-epoxides using BINOL-based Brønsted acid catalysts. Lithium-BINOL-phosphate-catalyzed desymmetrization of meso-epoxides with
PDF
Album
Review
Published 05 Jul 2018

Mild and selective reduction of aldehydes utilising sodium dithionite under flow conditions

  • Nicole C. Neyt and
  • Darren L. Riley

Beilstein J. Org. Chem. 2018, 14, 1529–1536, doi:10.3762/bjoc.14.129

Graphical Abstract
  • reduction utilizing solid mixes of sodium borohydride, lithium chloride and celite [12], and the Ley group were able to demonstrate a green transfer hydrogenation of ketones under flow using catalytic lithium tert-butoxide in isopropanol [13]. We recently published a batch–flow hybrid synthesis of the
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2018

One hundred years of benzotropone chemistry

  • Arif Dastan,
  • Haydar Kilic and
  • Nurullah Saracoglu

Beilstein J. Org. Chem. 2018, 14, 1120–1180, doi:10.3762/bjoc.14.98

Graphical Abstract
  • (Scheme 8). After bromination of 40 with molecular bromine in carbon tetrachloride, direct dehydrobromination with lithium chloride in dimethylformamide gave 11 in 85% isolated yield. Müller’s group reported an alternative synthesis for 11 starting from the carbene adduct 41 over two or three steps [55
  • as a fairly air-stable red-brown solid. b. Nucleophilic addition to 4,5-benzotropone (11): Ried’s group realized the reaction of 4,5-benzotropone (11) and its derivatives with lithium acetylide as a nucleophile between −50 and −32 °C [130]. While the possible 1,4-conjugate addition product 149 was
  • bromination of Julia’s ketone 163 followed by spontaneous elimination of hydrogen bromide at the temperature of the reaction. 2,3-Benzotropone (12) was also prepared by bromination of 1-benzosuberone (162) using both NBS and molecular bromine followed by dehydrobromination (using lithium chloride in
PDF
Album
Review
Published 23 May 2018

Iodine(III)-mediated halogenations of acyclic monoterpenoids

  • Laure Peilleron,
  • Tatyana D. Grayfer,
  • Joëlle Dubois,
  • Robert H. Dodd and
  • Kevin Cariou

Beilstein J. Org. Chem. 2018, 14, 1103–1111, doi:10.3762/bjoc.14.96

Graphical Abstract
  • )iodobenzene (DIB) and lithium bromide yield a dibromo adduct (Scheme 1, reaction 2), whereas a combination of (bis(trifluoroacetoxy)iodo)benzene (PIFA) and tetra-n-butylammonium bromide (TBAB) gives bromo(trifluoro)acetoxylated 3a (Scheme 1, reaction 3) [16]. We then decided to further explore the synthetic
  • our previous study on the bromination of enamides [11]. Thus, using a slight excess of DIB along with a two-fold amount of lithium bromide at 0 °C in dry acetonitrile rapidly yielded dibromo adduct 2a in 91% yield (Table 1, entry 1). Switching the reaction conditions to bromo(trifluoro)acetoxylation
  • to −10 °C and the amount of lithium bromide, which was added dropwise as an aqueous solution, was diminished to 1.3 equivalents. By doing so, both the selectivity and the yield of 4a were improved though full conversion was not attained (Table 1, entry 4). Keeping the same procedure, complete
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2018

Selective carboxylation of reactive benzylic C–H bonds by a hypervalent iodine(III)/inorganic bromide oxidation system

  • Toshifumi Dohi,
  • Shohei Ueda,
  • Kosuke Iwasaki,
  • Yusuke Tsunoda,
  • Koji Morimoto and
  • Yasuyuki Kita

Beilstein J. Org. Chem. 2018, 14, 1087–1094, doi:10.3762/bjoc.14.94

Graphical Abstract
  • bromide [52] afforded modest yields of the carboxylation product 2a (Table 1, entry 1). Interestingly, a dramatic influence was observed when altering the bromide source to other types; the use of lithium bromide or organic bromides, e.g., bromotrimethylsilane and tetraethylammonium bromide, instead of
  • the potassium salt, were unsuccessful in forming the carboxylate 2a (Table 1, entries 2–4). The reason for this behavior was thought to be because lithium bromide or organic bromides in combination with PIDA generated the electrophilic ‘Br+’ species [71] and molecular bromine [72], or hypobromite and
PDF
Album
Supp Info
Letter
Published 16 May 2018

Cross-coupling of dissimilar ketone enolates via enolonium species to afford non-symmetrical 1,4-diketones

  • Keshaba N. Parida,
  • Gulab K. Pathe,
  • Shimon Maksymenko and
  • Alex M. Szpilman

Beilstein J. Org. Chem. 2018, 14, 992–997, doi:10.3762/bjoc.14.84

Graphical Abstract
  • lithium enolate followed by a second SET step to complete the transformation (Scheme 1a) [16][17]. A different approach, developed by Maulide, relies on the highly efficient umpolung of amides into enolonium species using triflic anhydride, a pyridine base and pyridine N-oxides (Scheme 1b). These
PDF
Album
Supp Info
Full Research Paper
Published 03 May 2018

Recent advances in synthetic approaches for medicinal chemistry of C-nucleosides

  • Kartik Temburnikar and
  • Katherine L. Seley-Radtke

Beilstein J. Org. Chem. 2018, 14, 772–785, doi:10.3762/bjoc.14.65

Graphical Abstract
  • stereochemical inversion at C3' [75]. The desired stereoselectivity for 2'-deoxy analogues was obtained when BF3·OEt2 was used. Furthermore, another route to the synthesis of C-nucleosides was demonstrated by direct addition of aryl lithium reagents to the 2'-OMe ribonolactone (Figure 11B). While the expected
PDF
Album
Review
Published 05 Apr 2018

Stepwise radical cation Diels–Alder reaction via multiple pathways

  • Ryo Shimizu,
  • Yohei Okada and
  • Kazuhiro Chiba

Beilstein J. Org. Chem. 2018, 14, 704–708, doi:10.3762/bjoc.14.59

Graphical Abstract
  • been developing oxidative SET-triggered cycloadditions of enol ethers by electrocatalysis [26][27][28][29][30][31][32] in lithium perchlorate/nitromethane electrolyte solution [33]. The reactions involve a radical cation chain process and are complete using a catalytic amount of electricity. During the
  • “direct” or “indirect” pathways, affording the corresponding adduct 3 in excellent yield. Conclusion In conclusion, we have demonstrated that the radical cation Diels–Alder reaction initiated by electrocatalysis in lithium perchlorate/nitromethane electrolyte solution is not limited to styrenes but was
PDF
Album
Supp Info
Letter
Published 27 Mar 2018

Investigating radical cation chain processes in the electrocatalytic Diels–Alder reaction

  • Yasushi Imada,
  • Yohei Okada and
  • Kazuhiro Chiba

Beilstein J. Org. Chem. 2018, 14, 642–647, doi:10.3762/bjoc.14.51

Graphical Abstract
  • luminescence quenching experiments [19]. With such an understanding in hand, radical ion chain processes could be further optimized to realize greener transformations. We have been developing anodic cycloadditions [20][21][22][23][24][25] enabled by lithium perchlorate/nitromethane electrolyte solution [26
PDF
Album
Supp Info
Letter
Published 16 Mar 2018

Mannich base-connected syntheses mediated by ortho-quinone methides

  • Petra Barta,
  • Ferenc Fülöp and
  • István Szatmári

Beilstein J. Org. Chem. 2018, 14, 560–575, doi:10.3762/bjoc.14.43

Graphical Abstract
  • -1H-indole in the presence of lithium perchlorate as catalyst to afford the new 3,3-dimethyl-2,3,4,9-tetrahydro-1H-xanthen-1-ones and 3-substituted indoles. The process was then extended to isocyanides and new aminobenzofurans formed via [4 + 1] cycloaddition were isolated. Bharate et al. reported
PDF
Album
Review
Published 06 Mar 2018

Recent developments in the asymmetric Reformatsky-type reaction

  • Hélène Pellissier

Beilstein J. Org. Chem. 2018, 14, 325–344, doi:10.3762/bjoc.14.21

Graphical Abstract
  • enolates can be considered as valuable alternatives to lithium enolates. Consequently, a number of samarium-mediated Reformatsky reactions have been developed. For example, SmI2 was found by Rinner et al. to mediate the diastereoselective Reformatsky reaction between chiral aldehyde 11 derived from D
PDF
Album
Review
Published 02 Feb 2018

Gram-scale preparation of negative-type liquid crystals with a CF2CF2-carbocycle unit via an improved short-step synthetic protocol

  • Tatsuya Kumon,
  • Shohei Hashishita,
  • Takumi Kida,
  • Shigeyuki Yamada,
  • Takashi Ishihara and
  • Tsutomu Konno

Beilstein J. Org. Chem. 2018, 14, 148–154, doi:10.3762/bjoc.14.10

Graphical Abstract
  • the 1,2-addition reaction of Int-I proceeds in preference to the conjugate addition reaction, the desired octa-1,7-diene 5a should be produced in higher yield. However, no significant improvement was observed after various attempts such as employing a more nucleophilic lithium reagent instead of the
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2018

Aminosugar-based immunomodulator lipid A: synthetic approaches

  • Alla Zamyatina

Beilstein J. Org. Chem. 2018, 14, 25–53, doi:10.3762/bjoc.14.3

Graphical Abstract
  • TBS ether by treatment with HF in pyridine, followed by phosphorylation using tetrabenzyl pyrophosphate in the presence of lithium bis(trimethyl)silylamide [76] in THF at −78 °C. Final deprotection by catalytic hydrogenolysis over Pd-black provided target lipid A derivatives 8 and 9 corresponding
  • hydroxyl group was regio- and stereoselectively phosphorylated using tetrabenzyl diphosphate in the presence of lithium bis(trimethylsilyl)amide [76] to provide glycosyl phosphotriester as exclusively α-anomer. Global deprotection was accomplished by catalytic hydrogenolysis over Pd-black to give
  • isomerized in the presence of an Ir complex and the resulting prop-1-enyl group was then removed by aqueous iodine to yield hemiacetal 30 which was stereoselectively phosphorylated by reaction with lithium hexamethyldisilazide (LHMDS), and subsequent treatment with tetrabenzyl pyrophosphate. Final
PDF
Album
Review
Published 04 Jan 2018

Vinylphosphonium and 2-aminovinylphosphonium salts – preparation and applications in organic synthesis

  • Anna Kuźnik,
  • Roman Mazurkiewicz and
  • Beata Fryczkowska

Beilstein J. Org. Chem. 2017, 13, 2710–2738, doi:10.3762/bjoc.13.269

Graphical Abstract
  • ]. Vinylphosphonium salt can also be synthesized by dehydrohalogenation of α-bromoethylphosphonium bromide 13 in the presence of lithium bromide in anhydrous dimethylformamide (Scheme 10). α-Bromoethylphosphonium salt 13 was obtained according to the three-step procedure, starting from the alkylation of
PDF
Album
Review
Published 15 Dec 2017

Development of a fluorogenic small substrate for dipeptidyl peptidase-4

  • Futa Ogawa,
  • Masanori Takeda,
  • Kanae Miyanaga,
  • Keita Tani,
  • Ryuji Yamazawa,
  • Kiyoshi Ito,
  • Atsushi Tarui,
  • Kazuyuki Sato and
  • Masaaki Omote

Beilstein J. Org. Chem. 2017, 13, 2690–2697, doi:10.3762/bjoc.13.267

Graphical Abstract
  • + calcd for C16H16N2O5, 316.3086; found, 316.1051. (S)-N-(2,4-Bis((E)-3,3,3-trifluoroprop-1-en-1-yl)phenyl)-1-(2-(1,3-dioxo-2H-isoindolin-2-yl)acetyl)pyrrolidine-2-carboxamide (7): 5 (2 mmol) and lithium hydroxide (12 mmol) were placed in a flask. To the flask was added THF (4.8 mL), methanol (1.5 mL
PDF
Album
Full Research Paper
Published 14 Dec 2017

Ring-size-selective construction of fluorine-containing carbocycles via intramolecular iodoarylation of 1,1-difluoro-1-alkenes

  • Takeshi Fujita,
  • Ryo Kinoshita,
  • Tsuyoshi Takanohashi,
  • Naoto Suzuki and
  • Junji Ichikawa

Beilstein J. Org. Chem. 2017, 13, 2682–2689, doi:10.3762/bjoc.13.266

Graphical Abstract
  • choice of base, leading to the construction of a [7]annulene system (Scheme 5). The use of lithium bases, such as lithium diisopropylamide and lithium hexamethyldisilazide, induced HF eliminations as well as substantial HI elimination. However, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) exclusively
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2017
Other Beilstein-Institut Open Science Activities