Search results

Search for "chiral catalyst" in Full Text gives 54 result(s) in Beilstein Journal of Organic Chemistry.

The synthesis of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides by the microwave-assisted Pudovik reaction

  • Erika Bálint,
  • Ádám Tajti,
  • Anna Ádám,
  • István Csontos,
  • Konstantin Karaghiosoff,
  • Mátyás Czugler,
  • Péter Ábrányi-Balogh and
  • György Keglevich

Beilstein J. Org. Chem. 2017, 13, 76–86, doi:10.3762/bjoc.13.10

Graphical Abstract
  • , THF or toluene) [53][54][55][56], or in the presence of a chiral catalyst [57]. There is only one solvent and catalyst-free example [58], but in this case a long reaction time (9 h) was required. In the Pudovik synthesis of α-aminophosphine oxides, the MW-assisted accomplishment has not been utilized
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2017

New approaches to organocatalysis based on C–H and C–X bonding for electrophilic substrate activation

  • Pavel Nagorny and
  • Zhankui Sun

Beilstein J. Org. Chem. 2016, 12, 2834–2848, doi:10.3762/bjoc.12.283

Graphical Abstract
  • as potential catalysts, and chiral catalyst L25 was identified as the catalyst of choice. Although no chirality transfer was observed during the reduction of 2-phenylquinoline, L25 was found to be a very active catalyst promoting transfer hydrogenation of a C=N group containing heterocycles and
PDF
Album
Review
Published 23 Dec 2016

Towards the development of continuous, organocatalytic, and stereoselective reactions in deep eutectic solvents

  • Davide Brenna,
  • Elisabetta Massolo,
  • Alessandra Puglisi,
  • Sergio Rossi,
  • Giuseppe Celentano,
  • Maurizio Benaglia and
  • Vito Capriati

Beilstein J. Org. Chem. 2016, 12, 2620–2626, doi:10.3762/bjoc.12.258

Graphical Abstract
  • advantages in terms of reaction sustainability. In particular, the possibility to strongly reduce the amounts of organic solvent and the recyclability of the catalyst were demonstrated [23]. Moreover, in this approach, no structural modification of the precious chiral catalyst was necessary. A well-explored
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2016

Rearrangements of organic peroxides and related processes

  • Ivan A. Yaremenko,
  • Vera A. Vil’,
  • Dmitry V. Demchuk and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2016, 12, 1647–1748, doi:10.3762/bjoc.12.162

Graphical Abstract
PDF
Album
Review
Published 03 Aug 2016

Conjugate addition–enantioselective protonation reactions

  • James P. Phelan and
  • Jonathan A. Ellman

Beilstein J. Org. Chem. 2016, 12, 1203–1228, doi:10.3762/bjoc.12.116

Graphical Abstract
  • the chiral catalyst can bind and organize the transition state. Many examples of conjugate addition–enantioselective protonation have been reported using carbon and sulfur nucleophiles, conversely relatively few examples have been reported using amines as nucleophiles. Sodeoka and co-workers have
PDF
Album
Review
Published 15 Jun 2016

Catalytic asymmetric synthesis of biologically important 3-hydroxyoxindoles: an update

  • Bin Yu,
  • Hui Xing,
  • De-Quan Yu and
  • Hong-Min Liu

Beilstein J. Org. Chem. 2016, 12, 1000–1039, doi:10.3762/bjoc.12.98

Graphical Abstract
  • also found that an increase of catalyst loading led to lower enantioselectivity. Similarly, Gou et al. reported the asymmetric aldol reactions of ketones with isatins catalyzed by a novel 1,2-diaminocyclohexane (DACH)-derived chiral catalyst (cat. 11, Scheme 25) [41]. The products were obtained in good
PDF
Album
Review
Published 18 May 2016

1H-Imidazol-4(5H)-ones and thiazol-4(5H)-ones as emerging pronucleophiles in asymmetric catalysis

  • Antonia Mielgo and
  • Claudio Palomo

Beilstein J. Org. Chem. 2016, 12, 918–936, doi:10.3762/bjoc.12.90

Graphical Abstract
  • inherent lower reactivity and the limitations associated to the activation/coordination of these compounds to a suitable chiral catalyst. Although recently it has been shown that the problem of this low reactivity may be addressed through the development of Brønsted base catalysts with increased basicity
PDF
Album
Review
Published 09 May 2016

Enantioselective carbenoid insertion into C(sp3)–H bonds

  • J. V. Santiago and
  • A. H. L. Machado

Beilstein J. Org. Chem. 2016, 12, 882–902, doi:10.3762/bjoc.12.87

Graphical Abstract
  • carboxamide group, in the new chiral catalyst (S)-23 the rhodium atoms are complexed to the chiral ligands by the carboxylate group, similar to those chiral complexes presented by Ikegami and coworkers (Table 1). Another important feature of this work is, unlike to the work that preceded it, that the new
  • development of the chiral catalyst (S)-23 (Scheme 10). Recent studies concerning the enantioselective carbenoid insertion into C(sp3)–H bonds From 2000, the study of carbenoid chemistry has become more comprehensive. The focus of most recently published works is the development of new catalysts for carbenoid
  • chiral catalyst to enantioselective carbenoid insertion into the endocyclic allylic C(sp3)–H bond. Regio- and enantioselective carbenoid insertion into the C(sp3)–H bond catalyzed by a new bulky cyclopropylcarboxylate-based chiral dirhodium complex (R)-74. Regio and diastereoselective carbenoid insertion
PDF
Album
Review
Published 04 May 2016

Recent advances in N-heterocyclic carbene (NHC)-catalysed benzoin reactions

  • Rajeev S. Menon,
  • Akkattu T. Biju and
  • Vijay Nair

Beilstein J. Org. Chem. 2016, 12, 444–461, doi:10.3762/bjoc.12.47

Graphical Abstract
  • trifluoromethyl ketones were later developed using the chiral catalyst 27 (Scheme 13) [29]. The electron-deficient triazolium-derived NHC 23 mediated efficient and chemoselective cross-benzoin reactions of aldehydes and α-ketoesters to produce acyloin products endowed with a quaternary stereocentre [30
PDF
Album
Correction
Review
Published 09 Mar 2016

Self and directed assembly: people and molecules

  • Tony D. James

Beilstein J. Org. Chem. 2016, 12, 391–405, doi:10.3762/bjoc.12.42

Graphical Abstract
  • using boron as a chiral catalyst was a good idea. We quickly came up with a research plan over a beer or two (Figure 13). Then on our return to the UK we quickly put these ideas into practice with the investigation of a “chiral boron reagent” formed between binol and trimethoxy borate for the Lewis acid
PDF
Album
Review
Published 01 Mar 2016

Recent advances in copper-catalyzed asymmetric coupling reactions

  • Fengtao Zhou and
  • Qian Cai

Beilstein J. Org. Chem. 2015, 11, 2600–2615, doi:10.3762/bjoc.11.280

Graphical Abstract
  • improved to 92% ee with a new chiral catalyst (Scheme 25) [65]. In 2012, Hoveyda and Jung reported a copper/NHC-catalyzed asymmetric allylic substitution of allyl phosphates with allenylboronates [66], leading to chiral allenes bearing a tertiary or quaternary carbon stereogenic center in high yields and
  • allylic alkylation of terminal alkynes with primary allylic phosphates through a copper/NHC chiral catalyst system. The authors obtained chiral enynes with a tertiary stereocenter at the allylic propargylic position in good yield and with excellent enantioselectivity (Scheme 35). Conclusion Copper
PDF
Album
Review
Published 15 Dec 2015

Iron complexes of tetramine ligands catalyse allylic hydroxyamination via a nitroso–ene mechanism

  • David Porter,
  • Belinda M.-L. Poon and
  • Peter J. Rutledge

Beilstein J. Org. Chem. 2015, 11, 2549–2556, doi:10.3762/bjoc.11.275

Graphical Abstract
  • reaction volume of 1 mL). Under these conditions the yield of allylic amine 9 doubled relative to the more dilute 1:1 reaction, to 17%; 10 and 11 were not observed. Reaction using a chiral catalyst The chiral catalyst Fe(R,R′)-PDP (6) has been used previously to promote asymmetric C–H oxidation reactions
  • investigations suggest the involvement of a free nitroso species which undergoes a nitroso–ene reaction with the alkene. The intermediacy of a free nitroso species means that asymmetric induction is not observed in reactions with the chiral catalyst Fe(R,R′)-PDP (6). Experimental General experimental All
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2015

Selected synthetic strategies to cyclophanes

  • Sambasivarao Kotha,
  • Mukesh E. Shirbhate and
  • Gopalkrushna T. Waghule

Beilstein J. Org. Chem. 2015, 11, 1274–1331, doi:10.3762/bjoc.11.142

Graphical Abstract
  • tripodal cage compounds (e.g., 280) by using a [2 + 2 + 2] cycloaddition reaction of branched triynes (Scheme 47). The best results for a cycloaddition were observed when triyne 279 was added dropwise over a period of 10 min to a solution of a chiral catalyst at elevated temperature (120 °C). Also, highly
PDF
Album
Review
Published 29 Jul 2015

(2R,1'S,2'R)- and (2S,1'S,2'R)-3-[2-Mono(di,tri)fluoromethylcyclopropyl]alanines and their incorporation into hormaomycin analogues

  • Armin de Meijere,
  • Sergei I. Kozhushkov,
  • Dmitrii S. Yufit,
  • Christian Grosse,
  • Marcel Kaiser and
  • Vitaly A. Raev

Beilstein J. Org. Chem. 2014, 10, 2844–2857, doi:10.3762/bjoc.10.302

Graphical Abstract
  • triflates of threonine stereoisomers [47], the chiral auxiliary approach [48][49][50][51] and enantioselective hydrogenation over a chiral catalyst [52][53]. All these approaches ought to be applicable to prepare unsubstituted β-methylphenylalanine, but most if not all of them have severe drawbacks. Among
PDF
Album
Supp Info
Full Research Paper
Published 03 Dec 2014

Chiral phosphines in nucleophilic organocatalysis

  • Yumei Xiao,
  • Zhanhu Sun,
  • Hongchao Guo and
  • Ohyun Kwon

Beilstein J. Org. Chem. 2014, 10, 2089–2121, doi:10.3762/bjoc.10.218

Graphical Abstract
  • binaphthyl skeleton, Fu and co-workers developed the first asymmetric [3 + 2] annulation of ethyl allenoate with various α,β-unsaturated enones to provide functionalized cyclopentenes (Scheme 2) [35]. The key structural feature of the chiral catalyst B1 is its rigid binaphthyl skeleton. This approach allowed
  • . Nitrogen-, phosphorus-, oxygen-, and sulfur-substituted olefins and allenamides were compatible with these B4-catalyzed reactions. Fu’s results provided useful hints for further expansion of the substrate scope. Using B2 as the chiral catalyst, Marinetti and co-workers also developed several asymmetric [3
  • various aspartic acid derivatives. Using the commercially available chiral catalyst (S,S)-Et-Duphos E7, Loh and co-workers developed the asymmetric [3 + 2] annulations of phenyl allenone and furanyl allenone with electron-deficient olefins, namely enones, maleates, and fumarates, to give corresponding
PDF
Album
Review
Published 04 Sep 2014

Proton transfers in the Strecker reaction revealed by DFT calculations

  • Shinichi Yamabe,
  • Guixiang Zeng,
  • Wei Guan and
  • Shigeyoshi Sakaki

Beilstein J. Org. Chem. 2014, 10, 1765–1774, doi:10.3762/bjoc.10.184

Graphical Abstract
  • asymmetric Strecker reaction, in which an (S)-α-phenylethylamine was employed as the chiral auxiliary [4]. In this reaction, he obtained a chiral alanine with 95% optically activity; see Scheme 2. In 1996, Lipton et al. succeeded in a series of asymmetric Strecker reactions by employing a chiral catalyst, a
  • afforded an initial product Ph-CH(NH2)-CN of configurational instability[5]. In the following, Sigman and Jacobsen used a parallel combinatorial library synthesis for the discovery and optimization of a chiral catalyst for the reaction of imines and HCN [6]. From then on, various catalytic asymmetric
  • first asymmetric Strecker reaction [4]. The first asymmetric synthesis of α-aminonitirles via a chiral catalyst [5]. A reaction model composed of Me-CH=O, HCN, NH3 and (H2O)10 for geometry optimizations to trace elementary processes. Broken lines stand for hydrogen bonds. Possible pathways for the
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2014

Atherton–Todd reaction: mechanism, scope and applications

  • Stéphanie S. Le Corre,
  • Mathieu Berchel,
  • Hélène Couthon-Gourvès,
  • Jean-Pierre Haelters and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2014, 10, 1166–1196, doi:10.3762/bjoc.10.117

Graphical Abstract
  • expected phosphoramidate was jointly isolated with 5 to 10% of thiophosphoramidate resulting from a cyclization reaction. The chiral phosphoramidates (Scheme 32-ii and iii) were tested as a chiral catalyst for the nucleophilic addition of diethylzinc [107] on benzaldehyde or for the asymmetric borane
PDF
Album
Review
Published 21 May 2014

Silver and gold-catalyzed multicomponent reactions

  • Giorgio Abbiati and
  • Elisabetta Rossi

Beilstein J. Org. Chem. 2014, 10, 481–513, doi:10.3762/bjoc.10.46

Graphical Abstract
  • nonsymmetric ketones. Moreover, an optical active compound could be generated during the reaction process since a chiral catalyst (proline) is used in the reactions. However, enantioselectivity was not observed by chiral HPLC analysis, and 3-pentanone gives rise to a mixture of diastereoisomers. Following this
  • dealing with the use of BINAP–AgClO4 as a chiral catalyst in the same two-component reaction [98]. Higher enantioselectivities were rarely observed with SbF6− being the weaker coordinating counter ion. An interesting application of silver catalysis in the allene chemistry field has been recently proposed
PDF
Album
Review
Published 26 Feb 2014

Exploration of an epoxidation–ring-opening strategy for the synthesis of lyconadin A and discovery of an unexpected Payne rearrangement

  • Brad M. Loertscher,
  • Yu Zhang and
  • Steven L. Castle

Beilstein J. Org. Chem. 2013, 9, 1179–1184, doi:10.3762/bjoc.9.132

Graphical Abstract
  • believed that this compound could be prepared from alkene 6 in two consecutive epoxidation–ring-opening sequences involving vinyl nucleophiles. We anticipated that a chiral catalyst such as one of the ketones developed by Shi and co-workers [15][16][17][18] would control the stereochemistry of the
PDF
Album
Supp Info
Full Research Paper
Published 18 Jun 2013

Enantioselective reduction of ketoimines promoted by easily available (S)-proline derivatives

  • Martina Bonsignore,
  • Maurizio Benaglia,
  • Laura Raimondi,
  • Manuel Orlandi and
  • Giuseppe Celentano

Beilstein J. Org. Chem. 2013, 9, 633–640, doi:10.3762/bjoc.9.71

Graphical Abstract
  • studies were also performed in order to elucidate the origin of the stereoselection. Keywords: chiral prolines; imine reduction; Lewis bases; organocatalysis; trichlorosilane; Introduction The reaction with stoichiometric amounts of trichlorosilane in the presence of a chiral catalyst is a well
PDF
Album
Supp Info
Letter
Published 02 Apr 2013

Efficient synthesis of β’-amino-α,β-unsaturated ketones

  • Isabelle Abrunhosa-Thomas,
  • Aurélie Plas,
  • Nishanth Kandepedu,
  • Pierre Chalard and
  • Yves Troin

Beilstein J. Org. Chem. 2013, 9, 486–495, doi:10.3762/bjoc.9.52

Graphical Abstract
  • under different protocols in which the stereoselectivity of the reaction can be introduced through the use of a chiral catalyst [9][10] (Lewis acid, Brønsted acids, L-proline, Cinchona alkaloids derivatives, thioureas, etc.), or by the addition of chiral amines to α,β-unsaturated esters [11][12] or the
PDF
Album
Supp Info
Letter
Published 06 Mar 2013

Reactions of salicylaldehyde and enolates or their equivalents: versatile synthetic routes to chromane derivatives

  • Ishmael B. Masesane and
  • Zelalem Yibralign Desta

Beilstein J. Org. Chem. 2012, 8, 2166–2175, doi:10.3762/bjoc.8.244

Graphical Abstract
  • 27. Although Shanti and co-workers used a chiral catalyst, no data was provided on the stereoselectivity of this reaction. In a study related to that of Shanti and co-workers, Yang and co-workers used chiral amine-thiourea catalyst 31 in a three-component enantioselective reaction of salicylaldehyde
PDF
Album
Review
Published 12 Dec 2012

Organocatalytic tandem Michael addition reactions: A powerful access to the enantioselective synthesis of functionalized chromenes, thiochromenes and 1,2-dihydroquinolines

  • Chittaranjan Bhanja,
  • Satyaban Jena,
  • Sabita Nayak and
  • Seetaram Mohapatra

Beilstein J. Org. Chem. 2012, 8, 1668–1694, doi:10.3762/bjoc.8.191

Graphical Abstract
  • %) (Scheme 31). In this cascade reaction, the installation of electron-withdrawing groups on the amino moiety of 2-aminobenzaldehydes is anticipated to increase the aniline N–H acidity, the abstraction of which by the tertiary amine leads to an aza-Michael reaction. The thiourea group in the chiral catalyst
PDF
Album
Review
Published 04 Oct 2012

Efficient and selective chemical transformations under flow conditions: The combination of supported catalysts and supercritical fluids

  • M. Isabel Burguete,
  • Eduardo García-Verdugo and
  • Santiago V. Luis

Beilstein J. Org. Chem. 2011, 7, 1347–1359, doi:10.3762/bjoc.7.159

Graphical Abstract
  • also be driven towards the branched aldehyde. In this case, the resulting compound has a stereogenic center and an enantioselective process can be developed using a chiral catalyst. An example was reported by Shibahara et al. [59]. For this purpose, a chiral catalyst based on polystyrene-supported (PS
PDF
Album
Review
Published 30 Sep 2011

Chiral gold(I) vs chiral silver complexes as catalysts for the enantioselective synthesis of the second generation GSK-hepatitis C virus inhibitor

  • María Martín-Rodríguez,
  • Carmen Nájera,
  • José M. Sansano,
  • Abel de Cózar and
  • Fernando P. Cossío

Beilstein J. Org. Chem. 2011, 7, 988–996, doi:10.3762/bjoc.7.111

Graphical Abstract
  • results previously obtained for each chiral catalyst [25][26][28][29][30][33]. According to these results the combination of chiral phosphoramidite and silver(I) salt is much more appropriate than the analogous one made with gold(I) salts. Especially useful is the reaction of (Ra,R)-8/AgSbF6 catalytic
PDF
Album
Full Research Paper
Published 19 Jul 2011
Other Beilstein-Institut Open Science Activities