Search results

Search for "1,2,3-triazole" in Full Text gives 104 result(s) in Beilstein Journal of Organic Chemistry.

New triazole-substituted triterpene derivatives exhibiting anti-RSV activity: synthesis, biological evaluation, and molecular modeling

  • Elenilson F. da Silva,
  • Krist Helen Antunes Fernandes,
  • Denise Diedrich,
  • Jessica Gotardi,
  • Marcia Silvana Freire Franco,
  • Carlos Henrique Tomich de Paula da Silva,
  • Ana Paula Duarte de Souza and
  • Simone Cristina Baggio Gnoatto

Beilstein J. Org. Chem. 2022, 18, 1524–1531, doi:10.3762/bjoc.18.161

Graphical Abstract
  • drug for its treatment, however, its clinical use has been limited due to its side effects. Here, we designed two new nitroaryl-1,2,3-triazole triterpene derivatives as novel anti-RSV drugs. Their anti-RSV and cytotoxic activity were evaluated in vitro, RSV protein F gene effects by RT-PCR and
  • triterpenes to synthesize 1,2,3-triazole derivatives via the Huisgen 1,3-cycloaddition reaction, but, as far as we know, this is the first report of the application of click chemistry to triterpenes with this objective [35][36][37]. Click chemistry is one of the most important tools used for the synthesis of
  • = 44.4 and 14.29 µM, respectively). Although betulinic acid (1) exhibited greater antiviral activity than ursolic acid (2), the introduction of a nitroaryl-1,2,3-triazole substituent in 2 was more efficient than its introduction in scaffold 1. Moreover, all tested compounds showed low cytotoxicity in
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2022

Scope of tetrazolo[1,5-a]quinoxalines in CuAAC reactions for the synthesis of triazoloquinoxalines, imidazoloquinoxalines, and rhenium complexes thereof

  • Laura Holzhauer,
  • Chloé Liagre,
  • Olaf Fuhr,
  • Nicole Jung and
  • Stefan Bräse

Beilstein J. Org. Chem. 2022, 18, 1088–1099, doi:10.3762/bjoc.18.111

Graphical Abstract
  • diversity of metal complexes incorporating 1,2,3-triazoles as ligands have been reported [16][17][18]. Triazole ligands with N-heterocycles such as Pyta (4-(2-pyridyl)-1,2,3-triazole) and related structures were employed to obtain novel metal complexes as catalysts [19][20] and imaging probes [21], as well
  • , a small library of 1,2,3-triazole-substituted quinoxalines was synthesized applying the method of Chattopadhyay et al. [10] with minor adjustments. Altogether, a series of 21 different aliphatic and aromatic terminal alkynes were reacted with tetrazolo[1,5-a]quinoxaline and Cu(I) triflate as a
  • conditions, see Supporting Information File 1 for details. Synthesis of 1,2,3-triazole-substituted quinoxalines via CuAAC from tetrazolo[1,5-a]quinoxaline (11a). aSynthesis of 14j* from 14j = Et2NH, K2CO3, DMF, 70 °C, 1 d. Mechanism of CuAAC vs denitrogenative annulation. Synthesis of bis(tetrazolo)[1,5-a:5
PDF
Album
Supp Info
Full Research Paper
Published 24 Aug 2022

Synthesis of novel alkynyl imidazopyridinyl selenides: copper-catalyzed tandem selenation of selenium with 2-arylimidazo[1,2-a]pyridines and terminal alkynes

  • Mio Matsumura,
  • Kaho Tsukada,
  • Kiwa Sugimoto,
  • Yuki Murata and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2022, 18, 863–871, doi:10.3762/bjoc.18.87

Graphical Abstract
  • -triazoles [33]. Based on these findings, we examined the reaction of Cu-mediated AAC. The reaction of 4aa with benzyl azide in the presence of one equivalent of CuI and pentamethyldiethylenetriamine (PMDETA) in THF at 60 °C gave the desired 5-selanyl-1,2,3-triazole 8 in 72% yield. This reaction yielded a
  • regioselective 1,3-dipolar azide–alkyne cycloaddition to form 5-selanyl-1,2,3-triazole. The investigation of the biological activity of the compounds obtained in this study and the application of this synthesis route using other heterocycles, instead of imidazopyridine, are currently underway in our laboratory
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2022

Anomeric 1,2,3-triazole-linked sialic acid derivatives show selective inhibition towards a bacterial neuraminidase over a trypanosome trans-sialidase

  • Peterson de Andrade,
  • Sanaz Ahmadipour and
  • Robert A. Field

Beilstein J. Org. Chem. 2022, 18, 208–216, doi:10.3762/bjoc.18.24

Graphical Abstract
  • natural substrate for sialidases and its chemical modification has been a useful approach to generate potent and selective inhibitors. Aiming at advancing the discovery of selective Trypanosoma cruzi trans-sialidase (TcTS) inhibitors, we have synthesised a small series of anomeric 1,2,3-triazole-linked
  • differences in sialidases that need to be addressed in order to achieve selective inhibition. Keywords: inhibition; neuraminidase; sialic acid; trans-sialidase; 1,2,3-triazole; Introduction Amongst the diversity of glycans present in living organisms, N-acetylneuraminic acid (Neu5Ac, sialic acid) is
  • series of C-2-modified sialic acid bearing a monosaccharide tethered via 1,2,3-triazole ring (sialylmimetic neoglycoconjugates) [19] that showed 67–91% inhibitory activity at 1 mM. We now envisaged replacing the monosaccharide moiety by (hetero)aromatic substituents (Figure 2A) expecting better
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2022

Synthesis and antimicrobial activity of 1H-1,2,3-triazole and carboxylate analogues of metronidazole

  • Satya Kumar Avula,
  • Syed Raza Shah,
  • Khdija Al-Hosni,
  • Muhammad U. Anwar,
  • Rene Csuk,
  • Biswanath Das and
  • Ahmed Al-Harrasi

Beilstein J. Org. Chem. 2021, 17, 2377–2384, doi:10.3762/bjoc.17.154

Graphical Abstract
  • -Wittenberg, Kurt-Mothes-Str. 2, d-06120, Halle (Saale), Germany 10.3762/bjoc.17.154 Abstract Herein, a series of novel 1H-1,2,3-triazole and carboxylate derivatives of metronidazole (5a–i and 7a–e) were synthesized and evaluated for their antimicrobial activity in vitro. All the newly synthesized compounds
  • inhibiting effects compared to the activity of the parent compound. Amongst the tested compounds 5b, 5c, 5e, 7b and 7e displayed excellent potent antimicrobial activity. The current study has demonstrated the usefulness of the 1H-1,2,3-triazole moiety in the metronidazole skeleton. Keywords: antimicrobial
  • agents; carboxylate analogues; 1H-1,2,3-triazole analogues; metronidazole; synthesis; Introduction Metronidazole (1) is an important antimicrobial agent which has been clinically used successfully for a long time. It was originally used for the treatment of infections caused by Trichomonas varginalis
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2021

(Phenylamino)pyrimidine-1,2,3-triazole derivatives as analogs of imatinib: searching for novel compounds against chronic myeloid leukemia

  • Luiz Claudio Ferreira Pimentel,
  • Lucas Villas Boas Hoelz,
  • Henayle Fernandes Canzian,
  • Frederico Silva Castelo Branco,
  • Andressa Paula de Oliveira,
  • Vinicius Rangel Campos,
  • Floriano Paes Silva Júnior,
  • Rafael Ferreira Dantas,
  • Jackson Antônio Lamounier Camargos Resende,
  • Anna Claudia Cunha,
  • Nubia Boechat and
  • Mônica Macedo Bastos

Beilstein J. Org. Chem. 2021, 17, 2260–2269, doi:10.3762/bjoc.17.144

Graphical Abstract
  • )pyrimidine-pyridine (PAPP) group as a pharmacophoric fragment, and these compounds were biologically evaluated. The synthesis of twelve new compounds was performed in three steps and assisted by microwave irradiation in a 1,3-dipolar cycloaddition to obtain 1,2,3-triazole derivatives substituted on carbon C
  • in the docking studies. Keywords: chronic myeloid leukemia; 1,3-dipolar cycloaddition; imatinib; (phenylamino)pyrimidine-pyridine; 1,2,3-triazole; Introduction Changes in tyrosine kinase proteins (TKPs), either by mutation or chromosomal translocation, can turn them into potent oncogenes
  • analogs [12][13], in this work, we designed a series of imatinib 1,2,3-triazole analogs 1a,b and 2a–j (Figure 1). The 1,2,3-triazoles are heterocyclic compounds, consisting of a five-membered ring, containing two carbon atoms and three nitrogen atoms [14]. The application of click chemistry, a concept
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2021

A recent overview on the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles

  • Pezhman Shiri,
  • Ali Mohammad Amani and
  • Thomas Mayer-Gall

Beilstein J. Org. Chem. 2021, 17, 1600–1628, doi:10.3762/bjoc.17.114

Graphical Abstract
  • synthesis of a wide variety of relevant 1,4,5-trisubstituted 1,2,3-triazole molecules are reported. The synthesis of this category of diverse fully functionalized 1,2,3-triazoles has become a necessary and unique research subject in modern synthetic organic key transformations in academia, pharmacy, and
  • -triazoles; N-containing heterocycles; 1,4,5-trisubstituted 1,2,3-triazoles; Introduction A high number of N-heterocycles [1][2][3][4] are identified, and this number is increasing very quickly [5][6][7][8]. Among them, the small heterocyclic ring of the 1,2,3-triazole is present in a broad variety of
  • compounds with not only biological but also industrial significance [9][10][11]. It possesses a cyclic scaffold with carbon and three nitrogen elements in the ring [12][13][14][15]. An immense versatility of biological properties is possessed by 1,2,3triazole heterocyclic systems, and many strategies are
PDF
Album
Review
Published 13 Jul 2021

Double-headed nucleosides: Synthesis and applications

  • Vineet Verma,
  • Jyotirmoy Maity,
  • Vipin K. Maikhuri,
  • Ritika Sharma,
  • Himal K. Ganguly and
  • Ashok K. Prasad

Beilstein J. Org. Chem. 2021, 17, 1392–1439, doi:10.3762/bjoc.17.98

Graphical Abstract
  • . The heterocyclic structures which were found to be attached to these double-headed nucleosides include triazolophthalazine [11], 4,6-di-tert-butylbenzoxazole [12], mesitylisoxazole [13], 5-trimethylsilyl-1,2,3-triazole [14], 1-pivaloyloxymethyl-1H-1,2,3-triazole [15], 1,3,4-oxadiazino[6,5-b]indole [16
  • ]. Nielsen and co-workers [43] synthesized 2′-(4-(thymin-1-ylmethyl)-1,2,3-triazole-1-yl)- and 2′-(4-(N6-benzoyladenine-9-ylmethyl)-1,2,3-triazole-1-yl)-substituted double-headed nucleosides of 2′-deoxy-5′-O-(4,4′-dimethoxytrityl)uridine (14 and 15) from the nucleoside azide 12 which in turn was obtained by
  • complementary bases [34]. Nielsen and co-workers [23] synthesized the double-headed nucleoside 1-(5′-O-(4,4′-dimethoxytrityl)-2′-C-((4-(pyren-1-yl)-1,2,3-triazole-1-yl)methyl)arabinofuranosyl)uracil (41) starting from spironucleoside 2 which in turn was synthesized from uridine following a procedure reported in
PDF
Album
Review
Published 08 Jun 2021

Microwave-assisted multicomponent reactions in heterocyclic chemistry and mechanistic aspects

  • Shivani Gulati,
  • Stephy Elza John and
  • Nagula Shankaraiah

Beilstein J. Org. Chem. 2021, 17, 819–865, doi:10.3762/bjoc.17.71

Graphical Abstract
PDF
Album
Review
Published 19 Apr 2021

Synthesis of β-triazolylenones via metal-free desulfonylative alkylation of N-tosyl-1,2,3-triazoles

  • Soumyaranjan Pati,
  • Renata G. Almeida,
  • Eufrânio N. da Silva Júnior and
  • Irishi N. N. Namboothiri

Beilstein J. Org. Chem. 2021, 17, 762–770, doi:10.3762/bjoc.17.66

Graphical Abstract
  • 61% yields, respectively. The reaction of mild electron withdrawing 3-methoxyphenyl-1,2,3-triazole 1e led to product 3h in low yield (38%) whereas the corresponding 4-tert-butylphenyl-1,2,3-triazole 1f afforded the product 3i in 53% yield. Later, the reaction was performed using various
  • the scope of cyclohexane-1,3-dione 2a is limited. On the contrary, dimedone (2d) did not react with N-tosyl-1,2,3-triazole, but reacted with N-mesyl-1,2,3-triazole to form the 5,5-dimethyl-3-oxo-cyclohex-1-en-1-yl methanesulfonate intermediate 4a. The highly substrate-dependent nature of the reaction
  • excellent yields. Nucleophilic addition to 5- and 6-membered cyclic tosyloxyenones. Synthesis, functionalization and applications of triazoles. The reaction was performed using 0.2 mmol N-tosyl-1,2,3-triazole 1 and 0.2 mmol of cyclohexyl-1,3-dione 2. Yields are determined after silica gel column
PDF
Album
Supp Info
Letter
Published 31 Mar 2021

Effective microwave-assisted approach to 1,2,3-triazolobenzodiazepinones via tandem Ugi reaction/catalyst-free intramolecular azide–alkyne cycloaddition

  • Maryna O. Mazur,
  • Oleksii S. Zhelavskyi,
  • Eugene M. Zviagin,
  • Svitlana V. Shishkina,
  • Vladimir I. Musatov,
  • Maksim A. Kolosov,
  • Elena H. Shvets,
  • Anna Yu. Andryushchenko and
  • Valentyn A. Chebanov

Beilstein J. Org. Chem. 2021, 17, 678–687, doi:10.3762/bjoc.17.57

Graphical Abstract
  • into two well-resolved doublets and two triplets slightly shifted downfield. This phenomenon can be explained by the loss of conformational motion of the aromatic ring and the formation of the hard molecular carcass of the 7-membered ring fused with a 1,2,3-triazole cycle. Then we applied higher
PDF
Album
Supp Info
Full Research Paper
Published 08 Mar 2021

Deoxygenative C2-heteroarylation of quinoline N-oxides: facile access to α-triazolylquinolines

  • Geetanjali S. Sontakke,
  • Rahul K. Shukla and
  • Chandra M. R. Volla

Beilstein J. Org. Chem. 2021, 17, 485–493, doi:10.3762/bjoc.17.42

Graphical Abstract
  • reaction conditions (Scheme 1b) [58][59][60][61][62]. Results and Discussion We initiated our trials employing easily accessible quinoline N-oxide (1a) and 1-tosyl-4-phenyl-1,2,3-triazole (2a) as model substrates. Subjecting the reaction mixture to 100 °C in the presence of DIPEA in 1,2-dichloroetane (DCE
  • ) with 4-phenyl-1-tosyl-1H-1,2,3-triazole (2a, 8.3 mmol, 1.2 equiv) at room temperature for 1 h, the reaction worked equally well and produced the desired product 3a in 87% yield (1.6 g). In addition, to enlarge the simplicity of the developed protocol for selective C2-triazolylation of quinoline
  • the stepwise pathway. The plausible mechanism for the C2-triazolylation of quinoline N-oxides is presented in Scheme 7 [64]. The reaction initiates by the nucleophilic attack of quinoline N-oxide, e.g., 1a, on the sulfonyl group of N-sulfonyl-1,2,3-triazole 2, leading to the formation of intermediate
PDF
Album
Supp Info
Letter
Published 17 Feb 2021

1,2,3-Triazoles as leaving groups in SNAr–Arbuzov reactions: synthesis of C6-phosphonated purine derivatives

  • Kārlis-Ēriks Kriķis,
  • Irina Novosjolova,
  • Anatoly Mishnev and
  • Māris Turks

Beilstein J. Org. Chem. 2021, 17, 193–202, doi:10.3762/bjoc.17.19

Graphical Abstract
  • leaving group in SNAr reactions with S- and N-nucleophiles [19][20][21]. It is worth to note that 2/6-amino-6/2-triazolylpurines possess high levels of fluorescence [19][22][23][24]. Herein, we describe an extension for SNAr reactions that makes use of the 1,2,3-triazole leaving group of 2,6
  • a mixture of hexane and DCM using the slow-evaporation technique (Figure 2). This follows the previously reported regioselective C6-substitution of 2,6-bistriazolylpurines in SNAr transformations. Conclusion We have developed a novel SNAr–Arbuzov transformation that makes use of 1,2,3-triazole as a
  • C16H27ClN4O3P, 389.1504; found, 389.1508. General procedure for the synthesis of 9-alkyl-2,6-bistriazolyl-9H-purine derivatives 6 Dimethyl 1,1'-(9-heptyl-9H-purine-2,6-diyl)bis(1H-1,2,3-triazole-4-carboxylate) (6a): CuI (0.06 g, 0.30 mmol, 0.12 equiv) was added to a stirred solution of 2,6-diazido-9-heptyl-9H
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2021

Regioselective synthesis of heterocyclic N-sulfonyl amidines from heteroaromatic thioamides and sulfonyl azides

  • Vladimir Ilkin,
  • Vera Berseneva,
  • Tetyana Beryozkina,
  • Tatiana Glukhareva,
  • Lidia Dianova,
  • Wim Dehaen,
  • Eugenia Seliverstova and
  • Vasiliy Bakulev

Beilstein J. Org. Chem. 2020, 16, 2937–2947, doi:10.3762/bjoc.16.243

Graphical Abstract
  • , Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium 10.3762/bjoc.16.243 Abstract N-Sulfonyl amidines bearing 1,2,3-triazole, isoxazole, thiazole and pyridine substituents were successfully prepared for the first time by reactions of primary, secondary and tertiary heterocyclic
  • thioamides with alkyl- and arylsulfonyl azides. For each type of thioamides a reliable procedure to prepare N-sulfonyl amidines in good yields was found. Reactions of 1-aryl-1,2,3-triazole-4-carbothioamides with azides were shown to be accompanied with a Dimroth rearrangement to form 1-unsubstituted 5
  • -arylamino-1,2,3-triazole-4-N-sulfonylcarbimidamides. 2,5-Dithiocarbamoylpyridine reacts with sulfonyl azides to form a pyridine bearing two sulfonyl amidine groups. Keywords: amidines; Dimroth rearrangement; isoxazoles; sulfonyl thiazoles; thioamides; 1,2,3-triazoles; Introduction The biological activity
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2020

Azidophosphonium salt-directed chemoselective synthesis of (E)/(Z)-cinnamyl-1H-triazoles and regiospecific access to bromomethylcoumarins from Morita–Baylis–Hillman adducts

  • Soundararajan Karthikeyan,
  • Radha Krishnan Shobana,
  • Kamarajapurathu Raju Subimol,
  • J. Helen Ratna Monica and
  • Ayyanoth Karthik Krishna Kumar

Beilstein J. Org. Chem. 2020, 16, 1579–1587, doi:10.3762/bjoc.16.130

Graphical Abstract
  • transformations for complex molecules [29][30][31]. Two individual research groups have reported the multistep pathway to access the cinnamyl-1H-1,2,3-triazole derivatives IX from acetates of MBH adducts (Scheme 2) [32][33]. The other preferable moiety for triazole transformations is the allyl halide of MBH
  • equiv) and CuI (3 mol %) at room temperature. To our expectations, the reaction afforded the (E)-cinnamyl-1H-1,2,3-triazole in a low yield of 24% (Table 1, entry 1). Thereby, we anticipated that an increase in the proportion of the AzPS would substantially increase the yield of 3a (Table 1, entries 2
  • efficiency of this reaction. The substrate scope of the optimized reaction and its limitations were further extended to structurally distinct MBH adducts (Scheme 3). The MBH adducts derived from methoxy and ethoxy acrylate stereochemically afforded the (E)-cinnamyl-1,4-disubstituted 1,2,3-triazole
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2020

Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis

  • Stephanie G. E. Amos,
  • Marion Garreau,
  • Luca Buzzetti and
  • Jerome Waser

Beilstein J. Org. Chem. 2020, 16, 1163–1187, doi:10.3762/bjoc.16.103

Graphical Abstract
PDF
Album
Review
Published 29 May 2020

A systematic review on silica-, carbon-, and magnetic materials-supported copper species as efficient heterogeneous nanocatalysts in “click” reactions

  • Pezhman Shiri and
  • Jasem Aboonajmi

Beilstein J. Org. Chem. 2020, 16, 551–586, doi:10.3762/bjoc.16.52

Graphical Abstract
  • groups. The intramolecular reaction of an alkyne as a dipolarophile with an azide as a 1,3-dipole to produce the desired 1,2,3-triazole motif is a model of “click” chemistry. The concept of “click” chemistry is an idiom that was developed by Sharpless and Meldal and later by others to describe organic
  • reaction proceeds under mild conditions, is effective, efficient, and requires no column purification in many cases. The Cu alkyne–azide cycloaddition (CuAAC) version also gives only 1,2,3-triazole products substituted at the 1- and 4-positions in an aqueous medium even at room temperature and requires no
  • 1,2,3-triazole products substituted at the 1- and 5-positions [13]. A range of copper(I) species (copper(I) iodide, copper(I) bromide, [Cu(CH3CN)4]PF6, (EtO)3P⋅CuI, and [Cu(PPh3)3]Br) has been applied in the prementioned reaction [14]. Generally, Cu(I) species are not thermodynamically stable and can be
PDF
Album
Review
Published 01 Apr 2020

Aerobic synthesis of N-sulfonylamidines mediated by N-heterocyclic carbene copper(I) catalysts

  • Faïma Lazreg,
  • Marie Vasseur,
  • Alexandra M. Z. Slawin and
  • Catherine S. J. Cazin

Beilstein J. Org. Chem. 2020, 16, 482–491, doi:10.3762/bjoc.16.43

Graphical Abstract
  • diphenylamine, only 20% of the desired product was observed (12c). Interestingly, with benzyl azide, a substrate not containing a sulfonyl moiety, the product obtained is the 1,2,3-triazole derivative [33], resulting from a [3 + 2] cycloaddition of azide and alkyne (Scheme 6). The catalytic system was also
PDF
Album
Supp Info
Full Research Paper
Published 24 Mar 2020

Halogen-bonding-induced diverse aggregation of 4,5-diiodo-1,2,3-triazolium salts with different anions

  • Xingyu Xu,
  • Shiqing Huang,
  • Zengyu Zhang,
  • Lei Cao and
  • Xiaoyu Yan

Beilstein J. Org. Chem. 2020, 16, 78–87, doi:10.3762/bjoc.16.10

Graphical Abstract
  • chemistry, anion recognition, organocatalysis, materials science and tuning of biomolecular systems [17][18][19][20][21][22][23][24][25][26][27]. 1,2,3-Triazole-based XB-donors, such as 5-iodo-1,2,3-triazoles A [28][29][30][31][32][33] and 5-iodo-1,2,3-triazolium B [34][35][36][37] (Figure 1), are promising
  • aldehydes [44]. Despite a variety of XB donors based on 1,2,3-triazole have been reported, no 4,5-diido-1,2,3-triazolium salts have been reported for an XB interaction. Herein, we report the synthesis and characterization of 4,5-diido-1,2,3-triazolium D with different anions. The crystal structures of these
  • understand the 1,2,3-triazole based XB donors, model 1,2,3-triazole A, 1,2,3-triazolium B, 1,2,3-triazolylidene complex C-CuI and diiodotriazolium D were calculated by DFT calculations (Figure 9). The calculation results show that σ holes in diiodotriazolium D are mainly located in the elongation of two C–I
PDF
Album
Supp Info
Full Research Paper
Published 13 Jan 2020

Diversity-oriented synthesis of spirothiazolidinediones and their biological evaluation

  • Sambasivarao Kotha,
  • Gaddamedi Sreevani,
  • Lilya U. Dzhemileva,
  • Milyausha M. Yunusbaeva,
  • Usein M. Dzhemilev and
  • Vladimir A. D’yakonov

Beilstein J. Org. Chem. 2019, 15, 2774–2781, doi:10.3762/bjoc.15.269

Graphical Abstract
  • represent an important class of nitrogen-containing biologically active compounds which exhibit various biological properties, such as antiviral, antibacterial and anticancer, etc. [55][56][57][58]. Recently, the use of 1,2,3-triazole derivatives as drug candidates has been increased for clinical therapy of
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2019

Fluorinated maleimide-substituted porphyrins and chlorins: synthesis and characterization

  • Valentina A. Ol’shevskaya,
  • Elena G. Kononova and
  • Andrei V. Zaitsev

Beilstein J. Org. Chem. 2019, 15, 2704–2709, doi:10.3762/bjoc.15.263

Graphical Abstract
  • 1,2,3-triazole heterocycles via the copper-catalyzed azide–alkyne cycloaddition reaction (CuAAC) between alkynes and azides, developed independently by Sharpless [41] and Meldal [42]. In addition to the applications of triazoles as pharmacophores in the potential biologically active molecules, these
  • -propargylmaleimide [44] was carried out successfully in CH2Cl2 and the fluorinated porphyrin–triazole–maleimide conjugates 7a and 7b were obtained in 54–58% yield. In these conjugates the tetrafluorophenyl units of the porphyrin macrocycle where separated from maleimides with 1,2,3-triazole spacer groups. Removal of
PDF
Album
Supp Info
Letter
Published 13 Nov 2019

Click chemistry towards thermally reversible photochromic 4,5-bisthiazolyl-1,2,3-triazoles

  • Chenxia Zhang,
  • Kaori Morinaka,
  • Mahmut Kose,
  • Takashi Ubukata and
  • Yasushi Yokoyama

Beilstein J. Org. Chem. 2019, 15, 2161–2169, doi:10.3762/bjoc.15.213

Graphical Abstract
  • AcOEt than in toluene, and the thermal back reaction rate in AcOEt was increased. Conclusion We have synthesized three novel thermally reversible 4,4'-(1-benzyl-1H-1,2,3-triazole-4,5-diyl)bis(5-methyl-2-(4-substituted-phenyl)thiazole)s 1o–3o by Ru(I)-catalysed Huisgen cyclization, which is a type of
PDF
Album
Supp Info
Letter
Published 13 Sep 2019

1,2,3-Triazolium macrocycles in supramolecular chemistry

  • Mastaneh Safarnejad Shad,
  • Pulikkal Veettil Santhini and
  • Wim Dehaen

Beilstein J. Org. Chem. 2019, 15, 2142–2155, doi:10.3762/bjoc.15.211

Graphical Abstract
  • candidates for amide bond surrogates. Interestingly, 1,2,3-triazole units can act as sensors for both anions and cations via different binding mechanisms [16][17]. The heterocyclic ring N2 and N3 atoms could realize the selective recognition of the cations whereas the C5–H···anions electrostatic interaction
  • of 1,4-disubstituted 1,2,3- triazole units [19][20][21][22][23][24]. Macrocyclic ring closure can be achieved by the CuAAC of building blocks functionalized with both azide and alkyne, using [1 + 1], [2 + 2], [n + n] strategies depending on how much triazoles are needed to be included in the
  • happen between Lewis bases and electron-defective heavy chalcogen atoms containing Lewis acidic s-holes which is known under the term chalcogen bonding (ChB) [18]. A mechanically interlocked rotaxane 8 (Figure 8) has been prepared by Beer and co-workers utilizing the 5-(methylchalcogeno)-1,2,3-triazole
PDF
Album
Review
Published 12 Sep 2019

Attempted synthesis of a meta-metalated calix[4]arene

  • Christopher D. Jurisch and
  • Gareth E. Arnott

Beilstein J. Org. Chem. 2019, 15, 1996–2002, doi:10.3762/bjoc.15.195

Graphical Abstract
  • yielding transformations to azide and 1,2,3-triazole derivatives which may have application in other areas of research. Keywords: calixarene; inherent chirality; mesoionic carbene; mononitration; ruthenacycle; Introduction Calix[4]arenes are a class of diverse macrocyclic compounds which have been the
  • Ullmann-type coupling to give aryl azide 2, which readily reacted with phenylacetylene in a copper-catalyzed Huisgen 1,3-dipolar cycloaddition to give 1,2,3-triazole 3 (Scheme 1). The formation of the ruthenacycle was then achieved using Albrecht’s method involving regioselective methylation of triazole 3
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2019

Polyaminoazide mixtures for the synthesis of pH-responsive calixarene nanosponges

  • Antonella Di Vincenzo,
  • Antonio Palumbo Piccionello,
  • Alberto Spinella,
  • Delia Chillura Martino,
  • Marco Russo and
  • Paolo Lo Meo

Beilstein J. Org. Chem. 2019, 15, 633–641, doi:10.3762/bjoc.15.59

Graphical Abstract
  • azide stretching of the reticulating agent, respectively. On the other hand, a tiny signal at 3140 cm−1 appears, which can be attributed to the Csp2–H stretching typical of the newly formed 1,2,3-triazole ring. The occurrence of the triazole ring is also accounted for by tiny signals at 1244, 1204, 1050
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2019
Other Beilstein-Institut Open Science Activities