Search results

Search for "hydroxy group" in Full Text gives 609 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Azidophosphonium salt-directed chemoselective synthesis of (E)/(Z)-cinnamyl-1H-triazoles and regiospecific access to bromomethylcoumarins from Morita–Baylis–Hillman adducts

  • Soundararajan Karthikeyan,
  • Radha Krishnan Shobana,
  • Kamarajapurathu Raju Subimol,
  • J. Helen Ratna Monica and
  • Ayyanoth Karthik Krishna Kumar

Beilstein J. Org. Chem. 2020, 16, 1579–1587, doi:10.3762/bjoc.16.130

Graphical Abstract
  • protection and elimination of the allylic hydroxy group. We believe that this crucial strategy could be primarily resolved by a quaternary phosphonium salt. After the initial screening of various quaternary phosphonium salts, the azidophosphonium salt [Ph3P+CBr3]N3−, reported by Blanco and co-workers, was
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2020

Heterogeneous photocatalysis in flow chemical reactors

  • Christopher G. Thomson,
  • Ai-Lan Lee and
  • Filipe Vilela

Beilstein J. Org. Chem. 2020, 16, 1495–1549, doi:10.3762/bjoc.16.125

Graphical Abstract
PDF
Album
Review
Published 26 Jun 2020

An overview on disulfide-catalyzed and -cocatalyzed photoreactions

  • Yeersen Patehebieke

Beilstein J. Org. Chem. 2020, 16, 1418–1435, doi:10.3762/bjoc.16.118

Graphical Abstract
  • alcohol by the thiyl radical produces thiophenol and an allylic radical. Next, the single-electron transfer (SET) from the allylic radical to another thiyl radical generates the allylic cation. Subsequently, the proton abstraction from the hydroxy group by the SET-generated thiolate gives the final
PDF
Album
Review
Published 23 Jun 2020

Recent synthesis of thietanes

  • Jiaxi Xu

Beilstein J. Org. Chem. 2020, 16, 1357–1410, doi:10.3762/bjoc.16.116

Graphical Abstract
PDF
Album
Review
Published 22 Jun 2020

Synthesis of 3-substituted isoxazolidin-4-ols using hydroboration–oxidation reactions of 4,5-unsubstituted 2,3-dihydroisoxazoles

  • Lívia Dikošová,
  • Júlia Laceková,
  • Ondrej Záborský and
  • Róbert Fischer

Beilstein J. Org. Chem. 2020, 16, 1313–1319, doi:10.3762/bjoc.16.112

Graphical Abstract
  • -unsubstituted 2,3-dihydroisoxazoles in moderate to very good yields, starting from readily available 5-acetoxy- and 5-hydroxyisoxazolidines [7][8]. Their reactivity in electrophilic addition reactions allows for a straightforward introduction of a hydroxy group at the C-4 position of the resulting
  • hydroborations proceeded with the exclusive formation of isoxazolidines with a hydroxy group in the C-4 position. We assume that the excellent regioselectivity is unambiguously caused by electronic effects since the endocyclic oxygen atom donates electrons to the C=C double bond, developing a negative partial
  • 8b resulted only in a reductive cleavage of the N–O bond. A successful debenzylation was achieved in a two-step procedure using 2,2,2-trichloroethyl chloroformate (TrocCl). However, the protection of the hydroxy group was required first (for the reaction of 8b with benzoyl chloride, see Supporting
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2020

Oxime radicals: generation, properties and application in organic synthesis

  • Igor B. Krylov,
  • Stanislav A. Paveliev,
  • Alexander S. Budnikov and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2020, 16, 1234–1276, doi:10.3762/bjoc.16.107

Graphical Abstract
PDF
Album
Review
Published 05 Jun 2020

Fluorinated phenylalanines: synthesis and pharmaceutical applications

  • Laila F. Awad and
  • Mohammed Salah Ayoup

Beilstein J. Org. Chem. 2020, 16, 1022–1050, doi:10.3762/bjoc.16.91

Graphical Abstract
  • the esters 83 with boronic acids 84a,b afforded the substituted phenylalanine derivatives 85a,b, respectively [58]. Deprotection of the hydroxy group was achieved by treatment with TBAF in THF to give 86a,b. Finally, fluorination of the alcohols 86a,b with DAST followed by deprotection gave the
  • the primary hydroxy group (Alloc) gave alcohol 117 in good yield. The fluorination of 117 was achieved by treatment with DAST to form 118. Then, selective removal of the Alloc protecting group using Pd(PPh3)4, was followed by oxidation of the resulting Boc-protected amino alcohol 119 to give the N-Boc
PDF
Album
Review
Published 15 May 2020

Efficient synthesis of piperazinyl amides of 18β-glycyrrhetinic acid

  • Dong Cai,
  • ZhiHua Zhang,
  • Yufan Meng,
  • KaiLi Zhu,
  • LiYi Chen,
  • ChangXiang Yu,
  • ChangWei Yu,
  • ZiYi Fu,
  • DianShen Yang and
  • YiXia Gong

Beilstein J. Org. Chem. 2020, 16, 798–808, doi:10.3762/bjoc.16.73

Graphical Abstract
  • instance, the hydroxy group can be converted into an oxime, acyloxyimino, alkoxyimino, alkoxy and 3-oxo group [9]. As a proteasome inhibitor, compound a suppresses the chymotrypsin-like activity of the proteasome in MT4 cells with an IC50 of 0.22 μM, nearly 100-fold more potent than 18β-glycyrrhetinic acid
PDF
Album
Supp Info
Full Research Paper
Published 21 Apr 2020

Recent advances in Cu-catalyzed C(sp3)–Si and C(sp3)–B bond formation

  • Balaram S. Takale,
  • Ruchita R. Thakore,
  • Elham Etemadi-Davan and
  • Bruce H. Lipshutz

Beilstein J. Org. Chem. 2020, 16, 691–737, doi:10.3762/bjoc.16.67

Graphical Abstract
  • -additions of cuprates derived from a silyllithium [47] to α,β-unsaturated ketones [48]. There was no effort made at that time to convert these reactions to the corresponding catalytic processes, rather, the accent was more towards using the silyl group introduced as a hydroxy group equivalent [49][50][51
PDF
Album
Review
Published 15 Apr 2020

Copper-catalyzed enantioselective conjugate reduction of α,β-unsaturated esters with chiral phenol–carbene ligands

  • Shohei Mimura,
  • Sho Mizushima,
  • Yohei Shimizu and
  • Masaya Sawamura

Beilstein J. Org. Chem. 2020, 16, 537–543, doi:10.3762/bjoc.16.50

Graphical Abstract
  • diethoxymethylsilane (4 equiv) as a reductant and t-AmOH (1 equiv) as a protonation reagent in DMA as the solvent at 25 °C for 15 h, the product 2a was produced in 98% yield (1H NMR analysis) with a promising enantioselectivity of 69% ee (Table 1, entry 1). When the phenolic hydroxy group of L1 was changed to a
  • ). Thus, the hydroxy group of L1 was essential for the enantioselectivity by the catalyst. When the mesityl group of L1 was changed to a bulkier 2-Me-4,6-Cy2-C6H2 group in L4, the enantioselectivity was markedly improved to 90% ee, with a high yield (97%, Table 1, entry 4). A naphthol substituent on the
PDF
Album
Supp Info
Full Research Paper
Published 31 Mar 2020

Synthesis of triphenylene-fused phosphole oxides via C–H functionalizations

  • Md. Shafiqur Rahman and
  • Naohiko Yoshikai

Beilstein J. Org. Chem. 2020, 16, 524–529, doi:10.3762/bjoc.16.48

Graphical Abstract
  • and the carbohelicene moieties (Scheme 1) [16]. The approach focused on the regioselective one-pot synthesis of a 7-hydroxybenzo[b]phosphole derivative from an 3-alkoxyphenylzinc reagent, an alkyne, and dichlorophenylphosphine [17]. The hydroxy group of this key intermediate served as a handle for the
PDF
Album
Supp Info
Letter
Published 27 Mar 2020

Exploring the scope of DBU-promoted amidations of 7-methoxycarbonylpterin

  • Anna R. Bockman and
  • Jeffrey M. Pruet

Beilstein J. Org. Chem. 2020, 16, 509–514, doi:10.3762/bjoc.16.46

Graphical Abstract
  • compared to a benzyl substituent [18]. The deleterious effect of a substituent α to the amine was most pronounced in the case of alanine (product 13), as compared to glycine (product 2). However, this steric constraint could be largely overcome by the presence of a β-hydroxy group, as seen with serine
  • (product 5). For β-hydroxyamines it is expected the hydroxy group expedites the amidation via hydrogen bonding to the 7-CMP carbonyl group, to assist in bringing the amine nucleophile into place (Figure 2). Quite unsurprisingly, secondary amines were less reactive, with N-methylbenzylamine (for 16) being
  • entirely unreactive under the typical reaction conditions. In this case the reaction required 3 h at 130 °C before product formation was observed. Interestingly, much like the improved results for serine, a β-hydroxy group dramatically overcame this issue for secondary amines, as 2-(methylamino)ethanol
PDF
Album
Supp Info
Full Research Paper
Published 26 Mar 2020

Oligomeric ricinoleic acid preparation promoted by an efficient and recoverable Brønsted acidic ionic liquid

  • Fei You,
  • Xing He,
  • Song Gao,
  • Hong-Ru Li and
  • Liang-Nian He

Beilstein J. Org. Chem. 2020, 16, 351–361, doi:10.3762/bjoc.16.34

Graphical Abstract
  • attached to the hydroxy group while in the corresponding ester product (l2–10, Figure 1), C12 is linked to the ester bond, thereby resulting in a change in the chemical shift of H connected with C12. As the chemical shift of H in methyl at 0.87 ppm does not change before and after the reaction, it is used
  • reaction mechanism with catalyst [HSO3-BDBU]H2PO4 is depicted in Scheme 3. Firstly, the Brønsted acidic IL [HSO3-BDBU]H2PO4 activates the carbonyl group of ricinoleic acid, leading to the generation of intermediate A. Concurrently, the hydroxy group in another ricinoleic acid molecule may be activated by
PDF
Album
Supp Info
Full Research Paper
Published 10 Mar 2020

Absolute configurations of talaromycones A and B, α-diversonolic ester, and aspergillusone B from endophytic Talaromyces sp. ECN211

  • Ken-ichi Nakashima,
  • Junko Tomida,
  • Takao Hirai,
  • Yoshiaki Kawamura and
  • Makoto Inoue

Beilstein J. Org. Chem. 2020, 16, 290–296, doi:10.3762/bjoc.16.28

Graphical Abstract
  • )), two aromatic methine protons (δH 6.64 (1H, br s, H-2) and 6.72 (1H, br s, H-4)), and a hydrogen-bonded hydroxy group (δH 11.82 (1H, br s, 4-OH)). The 13C NMR (Table 1) and DEPT data showed 16 carbon signals comprising two sp3 methyl groups (δC 22.5, 54.0), two sp3 methylene units (δC 28.0, 34.4), two
  • benzene ring with a methyl group at its C-3 position. The hydrogen-bonded hydroxy group was attached to the C-1 position, as evidenced by HMBC correlations from 4-OH to C-1 (δC 160.3), C-2 (δC 112.7), and C-4a (δC 155.9), which also implied that C-9a was hydrogen-bonded to a carbonyl group. Furthermore
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2020

Combination of multicomponent KA2 and Pauson–Khand reactions: short synthesis of spirocyclic pyrrolocyclopentenones

  • Riccardo Innocenti,
  • Elena Lenci,
  • Gloria Menchi and
  • Andrea Trabocchi

Beilstein J. Org. Chem. 2020, 16, 200–211, doi:10.3762/bjoc.16.23

Graphical Abstract
  • reduced gauche interactions [55]. Subsequent epoxidation at the double bond directed by the hydroxy group and using m-chloroperbenzoic acid allowed to install two additional stereocenters with complete control of the relative stereochemistry in 68% yield. Such two-step synthesis proved to proceed also in
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

Synthesis of 4-(2-fluorophenyl)-7-methoxycoumarin: experimental and computational evidence for intramolecular and intermolecular C–F···H–C bonds

  • Vuyisa Mzozoyana,
  • Fanie R. van Heerden and
  • Craig Grimmer

Beilstein J. Org. Chem. 2020, 16, 190–199, doi:10.3762/bjoc.16.22

Graphical Abstract
  • hydroxy group of coumarin 5 with dimethyl sulfate, to form 4-(2-fluorophenyl)-7-methoxycoumarin (6). Discussion During the synthesis of coumarin 6, solution-state NMR spectroscopy was used to characterize compounds 3, 5, and 6 (1H and 13C spectra are available in Supporting Information File 1). The 1H
  • methoxy group while 5 has a hydroxy group, a similar study was carried out for coumarin 5 (Figure S10b, Supporting Information File 1). The question posed at this point was “is this a through-bond (TB) or through-space (TS) effect”? To answer this question, we analysed a 13C-{1H} spectrum of coumarin 6
PDF
Album
Supp Info
Full Research Paper
Published 10 Feb 2020

Potent hemithioindigo-based antimitotics photocontrol the microtubule cytoskeleton in cellulo

  • Alexander Sailer,
  • Franziska Ermer,
  • Yvonne Kraus,
  • Rebekkah Bingham,
  • Ferdinand H. Lutter,
  • Julia Ahlfeld and
  • Oliver Thorn-Seshold

Beilstein J. Org. Chem. 2020, 16, 125–134, doi:10.3762/bjoc.16.14

Graphical Abstract
  • unit of indanocine (which is attached in ortho-position to the key south ring methoxy group) by a hydroxy function, giving HITub-1 (Figure 2). When HITub-1 later proved less bioactive than we had wished, we explored steric and polarity changes to this south ring hydroxy group by methylation (HITub-2
  • deprotonation of the hydroxy group, and that the lack of observable photoswitchability arose due to fast free rotation around the C–C single bond connecting the thioindigo and hemistilbene motifs. Interestingly, in neutral or acidic aqueous media where the quinoidal structure is not present (λmax ca. 370, 480
  • (in ortho-position to the key south ring methoxy group) has been replaced by a synthetically more accessible hydroxy group (delivered via demethylation of a trimethoxy precursor through BBr3). The hydroxy and amino groups have similar size and polarity, and can both act as H-bond donors or acceptors
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2020

[1,3]/[1,4]-Sulfur atom migration in β-hydroxyalkylphosphine sulfides

  • Katarzyna Włodarczyk,
  • Piotr Borowski and
  • Marek Stankevič

Beilstein J. Org. Chem. 2020, 16, 88–105, doi:10.3762/bjoc.16.11

Graphical Abstract
  • being hydroxy group removal followed by intramolecular formation of a sulfur–carbon bond. The second step seemed to be slow, and the intermediate carbocation could be trapped in the form of an alkenylphosphine sulfide. The comparison of the reactivity of the same substrate under two different reaction
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2020

The interaction between cucurbit[8]uril and baicalein and the effect on baicalein properties

  • Xiaodong Zhang,
  • Jun Xie,
  • Zhiling Xu,
  • Zhu Tao and
  • Qianjun Zhang

Beilstein J. Org. Chem. 2020, 16, 71–77, doi:10.3762/bjoc.16.9

Graphical Abstract
  • [8] fare forming hydrogen bonds, the cycle B and and a part of cycle C of baicalin inserted into the cavity of the Q[8]. This may be attributed to chrysin containing one hydroxy group less than baicalein, which reduced the hydrophilicity of cycle A, making it enter into the hydrophobic cavity of Q[8
  • ] easily. Because the hydroxy group on the carboxylic acid of the baicalin formed a hydrogen bond with the oxygen atoms of Q[8] at the portal, cycle C of baicalin was pushed into the cavity of Q[8]. Therefore, the inclusion model of cucurbit[8] with flavonoid compounds was determined by the structure of
PDF
Album
Supp Info
Full Research Paper
Published 10 Jan 2020

Synthesis of C-glycosyl phosphonate derivatives of 4-amino-4-deoxy-α-ʟ-arabinose

  • Lukáš Kerner and
  • Paul Kosma

Beilstein J. Org. Chem. 2020, 16, 9–14, doi:10.3762/bjoc.16.2

Graphical Abstract
  • orientation of the anomeric hydroxy group was proven by NOESY correlations between the H-2 proton and both geminal protons of the CH2P unit. A strong NOE was also observed for the upfield-shifted doublet of doublets at 1.71 ppm of the methylene group, which had an additional NOE correlation with the broad
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2020

Regioselectivity of glycosylation reactions of galactose acceptors: an experimental and theoretical study

  • Enrique A. Del Vigo,
  • Carlos A. Stortz and
  • Carla Marino

Beilstein J. Org. Chem. 2019, 15, 2982–2989, doi:10.3762/bjoc.15.294

Graphical Abstract
  • with more than one free hydroxy group allows reducing the usage of protecting groups, and thus developing simpler reaction sequences for the synthesis of oligosaccharides and glycoconjugates. A current alternative is the use of biocatalysts [4][5], although limited specific enzymes are available
  • , whose relative reactivity is still rather poorly understood [6]. Regioselective approaches for the glycosylation of acceptors with more than one free hydroxy group have been developed, and in some of the cases they were successfully rationalized [7][8][9]. In other cases, the results could not be
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2019

Automated glycan assembly of arabinomannan oligosaccharides from Mycobacterium tuberculosis

  • Alonso Pardo-Vargas,
  • Priya Bharate,
  • Martina Delbianco and
  • Peter H. Seeberger

Beilstein J. Org. Chem. 2019, 15, 2936–2940, doi:10.3762/bjoc.15.288

Graphical Abstract
  • (from −40 to −20 °C). Finally, the deprotection module removed the temporary protecting group, such as fluorenylmethyloxycarbonyl (Fmoc) or levulinoyl (Lev), to reveal a free hydroxy group that allowed for further chain elongation in the next cycle. Fmoc and Lev were used as orthogonal temporary
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

A green, economical synthesis of β-ketonitriles and trifunctionalized building blocks from esters and lactones

  • Daniel P. Pienaar,
  • Kamogelo R. Butsi,
  • Amanda L. Rousseau and
  • Dean Brady

Beilstein J. Org. Chem. 2019, 15, 2930–2935, doi:10.3762/bjoc.15.287

Graphical Abstract
  • , atom-economical ring opening of enolizable δ-valerolactone (3, Scheme 1). Although a two-step (or four-step, should hydroxy group O-protection prove to be necessary prior to acylation) protocol could, in theory, be envisaged to produce β-ketonitrile 2 from 3 by ring-opening esterification to afford
PDF
Album
Supp Info
Letter
Published 06 Dec 2019

A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions

  • Munmun Ghosh,
  • Valmik S. Shinde and
  • Magnus Rueping

Beilstein J. Org. Chem. 2019, 15, 2710–2746, doi:10.3762/bjoc.15.264

Graphical Abstract
  • (Scheme 18) [49]. Later, the same group explored another application of TEMPO-modified graphite felt electrodes for enantioselective electrocatalytic oxidation of racemic secondary alcohols 45 and 48 (Scheme 19). (S)-Isomers of alcohol 48 possessing a chiral center at α-position to the hydroxy group were
  • ω-hydroxyl amides [102]. Upon constant current electrolysis, substrates 181 were oxidized to 182, which underwent in situ cyclization by intramolecular nucleophilic hydroxy group addition to afford a diastereomeric mixture of 183. The study also revealed that when cyclic amines were used as
  • substrates (181a, 181b), the products were formed with 100% diastereoselectivity (183a and 183b), whereas acyclic amines resulted in lower diastereoselectivity (183c and 183d) even though the intramolecular attack of the hydroxy group to the iminium bond in 182 preferentially occurred from the Si-face over
PDF
Album
Review
Published 13 Nov 2019

Chemical synthesis of the pentasaccharide repeating unit of the O-specific polysaccharide from Escherichia coli O132 in the form of its 2-aminoethyl glycoside

  • Debasish Pal and
  • Balaram Mukhopadhyay

Beilstein J. Org. Chem. 2019, 15, 2563–2568, doi:10.3762/bjoc.15.249

Graphical Abstract
  • 91% isolated yield (Scheme 1). In a separate experiment, the 4-O-hydroxy group of the known compound 6 [15] was alkylated using naphthyl bromide in the presence of NaH [16] to afford the corresponding naphthyl derivative 7 in 82% yield. Next, the TBDPS group was removed using tetrabutylammonium
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2019
Other Beilstein-Institut Open Science Activities