Search results

Search for "DDQ" in Full Text gives 142 result(s) in Beilstein Journal of Organic Chemistry.

Synthesis of π-conjugated polycyclic compounds by late-stage extrusion of chalcogen fragments

  • Aissam Okba,
  • Pablo Simón Marqués,
  • Kyohei Matsuo,
  • Naoki Aratani,
  • Hiroko Yamada,
  • Gwénaël Rapenne and
  • Claire Kammerer

Beilstein J. Org. Chem. 2024, 20, 287–305, doi:10.3762/bjoc.20.30

Graphical Abstract
  • tetrabromothiophene S,S-dioxide 24 at 120–140 °C to yield the corresponding S- and Se-tribenzo[b,d,f]heteropines, 25b and 25c respectively, after oxidative aromatization mediated by DDQ. In the case of tellurepine 23d, attempts of thermally-activated Diels–Alder reaction resulted in Te-extrusion to afford
PDF
Album
Review
Published 15 Feb 2024

Substitution reactions in the acenaphthene analog of quino[7,8-h]quinoline and an unusual synthesis of the corresponding acenaphthylenes by tele-elimination

  • Ekaterina V. Kolupaeva,
  • Narek A. Dzhangiryan,
  • Alexander F. Pozharskii,
  • Oleg P. Demidov and
  • Valery A. Ozeryanskii

Beilstein J. Org. Chem. 2024, 20, 243–253, doi:10.3762/bjoc.20.24

Graphical Abstract
  • activity/inactivity in amination reactions. It is known that acenaphthylenes are usually readily formed from acenaphthenes by dehydrogenation with chloranil, dichlorodicyanobenzoquinone (DDQ) or active MnO2 on reflux in toluene/xylene and other inert solvents. However, attempts to obtain acenaphthylene 8
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2024

Substituent-controlled construction of A4B2-hexaphyrins and A3B-porphyrins: a mechanistic evaluation

  • Seda Cinar,
  • Dilek Isik Tasgin and
  • Canan Unaleroglu

Beilstein J. Org. Chem. 2023, 19, 1832–1840, doi:10.3762/bjoc.19.135

Graphical Abstract
  • )tripyrromethane (1, 0.090 mmol) in CH2Cl2 (1.5 mL) and the mixture was stirred at rt for 4 h. Afterwards, DDQ (0.180 mmol) was added to this solution and stirred for another 2 h. The resulting solution was eluted through a short silica gel column with EtOAc and the solvent was removed under reduced pressure. The
  • stirred at rt for 4 h. Afterwards, DDQ (0.195 mmol) was added to this solution and stirred for another 2 h. The resulting solution was eluted through a short silica gel column with EtOAc and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Tying a knot between crown ethers and porphyrins

  • Maksym Matviyishyn and
  • Bartosz Szyszko

Beilstein J. Org. Chem. 2023, 19, 1630–1650, doi:10.3762/bjoc.19.120

Graphical Abstract
  • ) complex 40-Cu formation proving that 40 acts as a colourimetric sensor. The reaction of 38 with pyrrole in the presence of BF3:Et2O resulted in 41 incorporating a single pyrrole ring [132]. The attempted oxidation with DDQ afforded fused macrocycle 42 (Scheme 11). The X-ray molecular structure of 42
PDF
Album
Perspective
Published 27 Oct 2023

Synthesis of ether lipids: natural compounds and analogues

  • Marco Antônio G. B. Gomes,
  • Alicia Bauduin,
  • Chloé Le Roux,
  • Romain Fouinneteau,
  • Wilfried Berthe,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2023, 19, 1299–1369, doi:10.3762/bjoc.19.96

Graphical Abstract
  • cesium cation with the halogen atom and the activation of the Sn–O bond of the stannylene acetal via a pentacoordinated intermediate with the fluoride anion [110]. The acetylation of the secondary alcohol and the deprotection of the primary alcohol with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ
PDF
Album
Review
Published 08 Sep 2023

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • benzylic ethers occurs at room temperature in the presence of Cu(OTf)2/InCl3 as catalysts and DDQ as oxidant (Scheme 3) [51]. By this route, a series of 2-alkoxymalonate diester derivatives was synthesized through direct CDC reaction. The mechanism study showed that the first step of the catalytic cycle
  • involved in the activation of DDQ by coordinating the carbonyl oxygen atom which leads to an increase in the oxidation activity of DDQ. Subsequently, Li et al. improved the above method, using a mixture of indium and copper salts as a catalyst, NHPI (N-hydroxyphthalimide) as a co-catalyst to achieve the
  • attention. Todd et al. reported a method for the cross-dehydrogenation coupling of isochroman C(sp3)–H bonds with anisole C(sp2)–H bonds using CuCl as a catalyst and DDQ as an oxidant (Scheme 11) [61]. However, this method is not ideal for tolerating substrates with electron-donating substituents (such as 1
PDF
Album
Review
Published 06 Sep 2023
Graphical Abstract
  • reductive quenching of Ru(bpy)3 and reduction of photooxidized Ru(bpy)3. Furthermore, quinones have well-studied PCET chemistry [26]. 2,3-Dichloro-5,6-cyano-1,4,hydroquinone, the hydrogenated form of 2,3-dichloro-5,6-cyano-1,4-benzoquinone (DDQ), has the highest oxidation potential of the 3 quinone examples
  • electrochemical hydrogenation methods might be more appropriate [41][42]. There is already work on electrochemical dehydrogenation of LOHCs [76][77]. In one example, DDQ was used to remove hydrogen from secondary amines by oxidizing them, followed by reoxidation of the hydrogenated DDQ at the electrode to
  • establish a redox catalysis cycle [76]. In non-aqueous media DDQ has a low oxidation potential (0.14 V vs Fc/Fc+ in acetonitrile) so that DDQ could potentially reductively quench Ir(ppy)3 and Ru(bpy)3 and regenerate
PDF
Album
Supp Info
Review
Published 08 Aug 2023

New one-pot synthesis of 4-arylpyrazolo[3,4-b]pyridin-6-ones based on 5-aminopyrazoles and azlactones

  • Vladislav Yu. Shuvalov,
  • Ekaterina Yu. Vlasova,
  • Tatyana Yu. Zheleznova and
  • Alexander S. Fisyuk

Beilstein J. Org. Chem. 2023, 19, 1155–1160, doi:10.3762/bjoc.19.83

Graphical Abstract
  • are also low in two-stage synthesis methods. The first of them is based on the three-component condensation of aminopyrazoles, Meldrum's acid, and aromatic aldehydes, followed by the oxidation of the intermediate with DDQ [13][16][19] (method B). The second one includes the reaction of an aromatic
PDF
Album
Supp Info
Full Research Paper
Published 02 Aug 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
PDF
Album
Review
Published 28 Jul 2023
Graphical Abstract
  • enantioselective aza-Friedel–Crafts addition. In the first step, the DDQ-promoted oxidation of 3-indolinonecarboxylate 22 generated indolenines that performed as the potential electrophiles towards indoles 4. The chiral catalyst effectively assembled the reacting partners in a chiral transition state through H
PDF
Album
Review
Published 28 Jun 2023

Honeycomb reactor: a promising device for streamlining aerobic oxidation under continuous-flow conditions

  • Masahiro Hosoya,
  • Yusuke Saito and
  • Yousuke Horiuchi

Beilstein J. Org. Chem. 2023, 19, 752–763, doi:10.3762/bjoc.19.55

Graphical Abstract
  • Pd(OAc)2 did not dissolve in toluene even with pyridine. As a substitute for TEMPO, 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) was tried (Table 1, entries 9 and 10) [45]. Although the reactivity was improved compared with the TEMPO catalytic system in Table 1, entries 3–5, the DDQ catalytic system
PDF
Album
Supp Info
Full Research Paper
Published 31 May 2023

Construction of hexabenzocoronene-based chiral nanographenes

  • Ranran Li,
  • Di Wang,
  • Shengtao Li and
  • Peng An

Beilstein J. Org. Chem. 2023, 19, 736–751, doi:10.3762/bjoc.19.54

Graphical Abstract
  • -dicyano-p-benzoquinone (DDQ) and methanesulfonic acid in dichloromethane, the helical structure 7 was obtained in a 72% yield [34]. The possible reason for this incomplete cyclization is the electronic effect of the alkoxy groups. Meanwhile, the methoxy version was also synthesized from precursor 5. The
  • dibenzocyclooctyne 8 and tetracyclone 2 in a 91% yield. After a subsequent sequence of deprotection and oxidation, ketone 10 was obtained. Through the oxidative cyclodehydrogenation reaction of 10 in the presence of DDQ and trifluoromethanesulfonic acid (TfOH), a saddle-helix hybrid nanographene 11, bearing an
  • Scholl reaction conditions (DDQ, H+; or FeCl3, CH3NO2), the aza-[5]helicenes 22 and 24 were obtained respectively with 60% and 23% yields [38]. It was noted that with the installation of two adjacent pyrimidines in this hexarylbenzene precursor, a fully cyclized planar NG was formed toward Scholl
PDF
Album
Review
Published 30 May 2023

Asymmetric synthesis of a stereopentade fragment toward latrunculins

  • Benjamin Joyeux,
  • Antoine Gamet,
  • Nicolas Casaretto and
  • Bastien Nay

Beilstein J. Org. Chem. 2023, 19, 428–433, doi:10.3762/bjoc.19.32

Graphical Abstract
  • PMB group, in presence of DDQ under anhydrous conditions [18], gratifyingly afforded acetal 25 in 74% yield, whose stereochemical assignment by NOESY NMR experiment showed the syn stereochemistry of the acetal. By deduction, it was confirmed that the asymmetric boron aldol reaction between 8 and 15
PDF
Album
Supp Info
Letter
Published 03 Apr 2023

Synthetic study toward tridachiapyrone B

  • Morgan Cormier,
  • Florian Hernvann and
  • Michaël De Paolis

Beilstein J. Org. Chem. 2022, 18, 1741–1748, doi:10.3762/bjoc.18.183

Graphical Abstract
  • necessary (70% yield, 2:1 dr). The desaturation of the enone compound was next examined and while exposure of 13 to oxidant (o-iodoxybenzoic acid (IBX) or 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)) left the starting materials unchanged, treatment with NaH in the presence of oxygen to induce the
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2022

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • application as redox-catalysts [124][125] or photoredox catalysts [30][31] for selective oxidations and also as stoichiometric oxidants [126]. Electron-withdrawing groups are used to increase oxidative properties, the most known examples are 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) [126] and 2,3,5,6
  • substrates. DDQ is a popular mediator for oxidation reactions. It has been used for intramolecular dehydrogenative C–C bond formation between aromatic groups [127]. Using this method, the formation of polyaromatic systems was achieved in good yields (Scheme 26). The cross-dehydrogenative C–N coupling of
  • benzylic substrates with azoles was developed [128] (Scheme 27). In the proposed mechanism DDQ participated in benzylic C–H bond cleavage. The C–N bond of the final product is formed as a result of the nucleophilic attack of azole on a benzylic cation. A two-fold molar excess of azoles was used. A
PDF
Album
Perspective
Published 09 Dec 2022

Functionalization of imidazole N-oxide: a recent discovery in organic transformations

  • Koustav Singha,
  • Imran Habib and
  • Mossaraf Hossain

Beilstein J. Org. Chem. 2022, 18, 1575–1588, doi:10.3762/bjoc.18.168

Graphical Abstract
  • presence of 1.0 mmol AcCl as eliminating agent (EA) in dry THF as solvent at −78 °C; (II) in case of path B, the mixture of 1.0 mmol of 2,2-dimethyl-4-phenyl-2H-imidazole 1-oxide (9a) and 1.0 mmol of pentafluorobenzene (12), 1.1 mmol of n-BuLi as base, 1.5 equiv DDQ as oxidant in dry THF as solvent was
  • leaving groups. The eliminating agent (AcCl) led to O-acylation of the intermediate 14 and resulted in deoxygenation through the release of AcOH giving 2H-imidazole derivatives. On the other hand, in case of “addition–oxidation” (SNH AO, path B), the oxidant DDQ picked up a proton from intermediate 14 to
PDF
Album
Review
Published 22 Nov 2022

Dissecting Mechanochemistry III

  • Lars Borchardt and
  • José G. Hernández

Beilstein J. Org. Chem. 2022, 18, 1454–1456, doi:10.3762/bjoc.18.150

Graphical Abstract
  • ) from an initial mechanical treatment of trichloroheptazine and Na3P, once again highlighting the importance of halogenated organic molecules as building blocks for graphitic heptazine materials (Scheme 4) [8]. Another halogenated molecule, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), proved to be
  • intermolecular C–N coupling reactions using DDQ as an oxidant.
PDF
Album
Editorial
Published 12 Oct 2022

Synthesis of meso-pyrrole-substituted corroles by condensation of 1,9-diformyldipyrromethanes with pyrrole

  • Baris Temelli and
  • Pinar Kapci

Beilstein J. Org. Chem. 2022, 18, 1403–1409, doi:10.3762/bjoc.18.145

Graphical Abstract
  • the bilane intermediate by using DDQ (Scheme 2). Pyrrole was used as both reagent and solvent in these reactions. The desired product was not observed in the reaction medium when various catalysts (TFA, I2, AlCl3, InCl3, FeCl3, H2SO4, p-TsOH, Mont. KSF, Mont. K-10, and AgOTf) were used at different
  • further increase in the amount of catalyst did not affect the yield (Table 1, entries 11–13). In order to determine the effect of the oxidant type and the oxidant amount, reactions were carried out with 3 and 4 equivalents of DDQ and p-chloranil. While more than 2 equivalents of DDQ did not have a
  • positive effect on the reaction yield (Table 1, entries 14 and 15), p-chloranil formed a product with a lower yield than DDQ (Table 1, entries 16–18). The activities of different copper catalysts were also tested in the model reaction. Only CuCl2 formed the product in 5% yield and the other salts did not
PDF
Album
Supp Info
Full Research Paper
Published 06 Oct 2022

Derivatives of benzo-1,4-thiazine-3-carboxylic acid and the corresponding amino acid conjugates

  • Péter Kisszékelyi,
  • Tibor Peňaška,
  • Klára Stankovianska,
  • Mária Mečiarová and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2022, 18, 1195–1202, doi:10.3762/bjoc.18.124

Graphical Abstract
  • . The use of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in 1,4-dioxane afforded the dimer 11a in a slightly better yield of 46% (Scheme 2). For all the prepared benzothiazine derivatives 10 we observed some degree of instability. The derivatives were reasonably stable in the solid state but usually
PDF
Supp Info
Full Research Paper
Published 09 Sep 2022

Facile and diastereoselective arylation of the privileged 1,4-dihydroisoquinolin-3(2H)-one scaffold

  • Dmitry Dar’in,
  • Grigory Kantin,
  • Alexander Bunev and
  • Mikhail Krasavin

Beilstein J. Org. Chem. 2022, 18, 1070–1078, doi:10.3762/bjoc.18.109

Graphical Abstract
  • the exclusive isolable product when benzene was eliminated from the reaction mixture (Table 1, entry 6). Interestingly, the formation of byproduct 15 (which could be, in principle, obtained by DDQ oxidation of 11 [25]) via the elimination of a diazo group has not been reported. Having identified the
PDF
Album
Supp Info
Letter
Published 22 Aug 2022

Copper-catalyzed multicomponent reactions for the efficient synthesis of diverse spirotetrahydrocarbazoles

  • Shao-Cong Zhan,
  • Ren-Jie Fang,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2022, 18, 796–808, doi:10.3762/bjoc.18.80

Graphical Abstract
  • -arylidene-1,3-dimethylbarbituric acid and 4-methylbenzaldehyde under the standard reaction conditions and further oxidation with DDQ generated the final aromatized product 3a in 75% yield. Under the same reaction conditions, similar aromatized products 3b and 3c were also produced in good yields with
  • . On the other hand, the tetrahydrospiro[carbazole-3,5'-pyrimidine] 4 can be converted to aromatized spiro[carbazole-3,5'-pyrimidine] 3 through the oxidation of DDQ. In the absence of the effective dienophile, the normal Friedel–Crafts alkylation of 2-methylindole with aromatic aldehyde gives the well
  • reduced pressure, the mixture of the above obtained product and DDQ (1.0 mmol, 0.227 g, 2.0 equiv) in dry acetonitrile (10.0 mL) was stirred at room temperature for about four hours. After removing the solvent by evaporating at reduced pressure, the residue was subjected to column chromatography with
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

DDQ in mechanochemical C–N coupling reactions

  • Shyamal Kanti Bera,
  • Rosalin Bhanja and
  • Prasenjit Mal

Beilstein J. Org. Chem. 2022, 18, 639–646, doi:10.3762/bjoc.18.64

Graphical Abstract
  • -Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) is a commonly known oxidant. Herein, we report that DDQ can be used to synthesize 1,2-disubstituted benzimidazoles and quinazolin-4(3H)-ones via the intra- and intermolecular C–N coupling reaction under solvent-free mechanochemical (ball milling) conditions. In
  • the presence of DDQ, the intramolecular C(sp2)–H amidation of N-(2-(arylideneamino)phenyl)-p-toluenesulfonamides leads to 1,2-disubstituted benzimidazoles and the one-pot coupling of 2-aminobenzamides with aryl/alkyl aldehydes resulted in substituted quinazolin-4(3H)-one derivatives in high yields
  • . Keywords: ball mill; 1H-benzo[d]imidazole; C(sp2)–H amidation; DDQ; mechanochemistry; quinazolin-4(3H)-one; Introduction The reawakening approaches to use solvent-free and environmentally benign conditions in organic synthesis have facilitated new opportunities [1][2][3][4]. The research area of
PDF
Album
Supp Info
Full Research Paper
Published 01 Jun 2022

Iron-catalyzed domino coupling reactions of π-systems

  • Austin Pounder and
  • William Tam

Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196

Graphical Abstract
  • -rich phenols, as well as those bearing halogen substituents, were suitable substrates under these reaction conditions. In Lei’s report, the reaction shuts down in the presence of TEMPO and in the absence of DDQ; thus, the formation of a phenoxy radical was proposed. In 2018, Zhong and co-workers
PDF
Album
Review
Published 07 Dec 2021

Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds

  • Alemayehu Gashaw Woldegiorgis and
  • Xufeng Lin

Beilstein J. Org. Chem. 2021, 17, 2729–2764, doi:10.3762/bjoc.17.185

Graphical Abstract
  • diastereoselectivity and 99% ee in the presence of the chiral phosphoric acid CPA 2. Subsequently, using the chiral phosphoric acid-catalyzed [3 + 2] formal cycloaddition and a moderate DDQ oxidation method over 34, enantiomerically enriched 2,3-diarylbenzoindoles 35 were successfully prepared by performing a central
  • accelerating imine formation (I-19), and under the catalysis of a chiral phosphoric acid, intramolecular nucleophilic addition occurs to form I-20, followed by oxidative dehydrogenation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). In the presence of 10 mol % chiral phosphoric acid CPA 7, the axially
  • to provide stable atropisomeric quinolines after oxidation by DDQ [86]. 3. Enantioselective synthesis of axially chiral arylalkene and N-arylamines Although many elegant strategies have been developed to enable the atroposelective construction of axially chiral biaryls and heterobiaryls [87][88][89
PDF
Album
Review
Published 15 Nov 2021

Electrocatalytic C(sp3)–H/C(sp)–H cross-coupling in continuous flow through TEMPO/copper relay catalysis

  • Bin Guo and
  • Hai-Chao Xu

Beilstein J. Org. Chem. 2021, 17, 2650–2656, doi:10.3762/bjoc.17.178

Graphical Abstract
  • the oxidation of the tetrahydroisoquinoline to an iminium intermediate with various chemical oxidants such as peroxides and DDQ followed by reaction with the copper acetylide species to deliver the 2-substituted tetrahydroisoquinoline product (Scheme 1A). These methods usually require elevated
  • electrochemical microreactors can be a viable tool for developing efficient transition-metal electrocatalysis. C(sp3)–H alkynylation of tetrahydroisoquinolines. L* = chiral ligand. TEMPO = 2,2,6,6-tetramethylpiperidine 1-oxyl. DDQ = 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. BPO = benzoyl peroxide. Substrate
PDF
Album
Supp Info
Letter
Published 28 Oct 2021
Other Beilstein-Institut Open Science Activities