Search results

Search for "DDQ" in Full Text gives 143 result(s) in Beilstein Journal of Organic Chemistry.

Functional panchromatic BODIPY dyes with near-infrared absorption: design, synthesis, characterization and use in dye-sensitized solar cells

  • Quentin Huaulmé,
  • Cyril Aumaitre,
  • Outi Vilhelmiina Kontkanen,
  • David Beljonne,
  • Alexandra Sutter,
  • Gilles Ulrich,
  • Renaud Demadrille and
  • Nicolas Leclerc

Beilstein J. Org. Chem. 2019, 15, 1758–1768, doi:10.3762/bjoc.15.169

Graphical Abstract
  • dyes. Synthetic scheme of the selected materials. a) hydroxylamine hydrochloride, NaHCO3, DMSO, 60 °C then acetylene, KOH, DMSO, 110 °C, 24% over the two steps; b) 4-iodobenzoyl chloride, DCM, rt then DDQ, DCM, rt then NEt3, BF3·OEt2, 0 °C to rt, 35%; c) piperidine, cat. PTSA, toluene, 130 °C, 5: 35
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
PDF
Album
Review
Published 19 Jul 2019

Synthesis of pyrrolo[1,2-a]quinolines by formal 1,3-dipolar cycloaddition reactions of quinolinium salts

  • Anthony Choi,
  • Rebecca M. Morley and
  • Iain Coldham

Beilstein J. Org. Chem. 2019, 15, 1480–1484, doi:10.3762/bjoc.15.149

Graphical Abstract
  • adduct 10 was performed using the oxidant 2,3-dichloro-5,6-dicyanoquinone (DDQ) to give the fully unsaturated product 13. To expand the range of products and explore the scope of the reaction further, we prepared the salts 14a and 14b (from 6-chloroquinoline and 6-bromoquinoline) and these were heated
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2019

Extending mechanochemical porphyrin synthesis to bulkier aromatics: tetramesitylporphyrin

  • Qiwen Su and
  • Tamara D. Hamilton

Beilstein J. Org. Chem. 2019, 15, 1149–1153, doi:10.3762/bjoc.15.111

Graphical Abstract
  • milder conditions by promoting the establishment of an equilibrium for the cyclization step, then adding a gentle oxidizer (p-chloranil or 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)) in a second step to obtain irreversibly the aromatized porphyrin [11]. The symmetrical tetra-meso-substituted
  • work on mechanochemical porphyrin synthesis has demonstrated that it is possible to synthesize tetraphenylporphyrin (TPP) by grinding benzaldehyde and pyrrole (two liquids) in the presence of an acid catalyst, followed by oxidation with DDQ in minimal amounts of solvent [19]. TPP was produced in a
  • several weeks brought about the appearance of TPP in small amounts. More immediate oxidation of this power, by dissolving in chloroform and stirring with DDQ for 2 hours, allowed isolation of TPP in 28% yield [19]. Appearance of TPP upon oxidation confirms that mechanochemistry successfully brought about
PDF
Album
Supp Info
Letter
Published 22 May 2019

Multicomponent reactions (MCRs): a useful access to the synthesis of benzo-fused γ-lactams

  • Edorta Martínez de Marigorta,
  • Jesús M. de Los Santos,
  • Ana M. Ochoa de Retana,
  • Javier Vicario and
  • Francisco Palacios

Beilstein J. Org. Chem. 2019, 15, 1065–1085, doi:10.3762/bjoc.15.104

Graphical Abstract
  • acid derivative as one of the substrates of the reaction, together with an amine and a third reagent that provides the carbon atom needed to complete the cyclic moiety. Thus, Shi et al. [76] reacted benzoic acid derivatives 1, amides 2 and DMSO (3) in the presence of DDQ as oxidant and without any
PDF
Album
Review
Published 08 May 2019

Efficient synthesis of 4-substituted-ortho-phthalaldehyde analogues: toward the emergence of new building blocks

  • Clémence Moitessier,
  • Ahmad Rifai,
  • Pierre-Edouard Danjou,
  • Isabelle Mallard and
  • Francine Cazier-Dennin

Beilstein J. Org. Chem. 2019, 15, 721–726, doi:10.3762/bjoc.15.67

Graphical Abstract
  • cyclisation in a basic medium of 2 then occurred to generate 4,5-dihydroisobenzofuran-5-ol (3) [19]. At this step, Cao et al. [17] have chosen the direct oxidation of 4,5-dihydroisobenzofuran-5-ol (3) to obtain 4-HO-OPA by using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as an oxidant. However, the yield
  • initiated in order to evaluate the stability of the protected RO-OPA and to certify the absence of OPA contamination [20]. Two major oxidants, SeO2 and DDQ were chosen for 5-methoxy and 5-acetoxy-4,5-dihydroisobenzofuran oxidation. As illustrated in Scheme 3, the reaction occurred with both reactants but
  • -phthalaldehyde (5a) and 78% of OPA (Table 2, entry 2). As for 5-methoxy-4,5-dihydroisobenzofuran (4b), it was totally converted to 4-hydroxyphthalic acid (7, Table 2, entry 3). In regard to these results, oxidation with SeO2 leads to the unwanted products OPA and 7, so oxidation with DDQ was initiated to avoid
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2019

Catalyst-free assembly of giant tris(heteroaryl)methanes: synthesis of novel pharmacophoric triads and model sterically crowded tris(heteroaryl/aryl)methyl cation salts

  • Rodrigo Abonia,
  • Luisa F. Gutiérrez,
  • Braulio Insuasty,
  • Jairo Quiroga,
  • Kenneth K. Laali,
  • Chunqing Zhao,
  • Gabriela L. Borosky,
  • Samantha M. Horwitz and
  • Scott D. Bunge

Beilstein J. Org. Chem. 2019, 15, 642–654, doi:10.3762/bjoc.15.60

Graphical Abstract
  • reactions could also be carried out in water (at circa 80 °C) but with chemoselectivity favoring (Ar1Ar1Ar2)CH over (Ar1Ar2Ar3)CH. The molecular structure of a representative (Ar1Ar2Ar3)CH triad was confirmed by X-ray analysis. Model tris(heteroaryl/aryl)methylium salts were generated by reaction with DDQ
  • attempts to cleanly generate the salts by hydride abstraction with trityl-BF4 were unsuccessful [61], presumably due to extreme steric crowding, the reaction with DDQ/HPF6 (Scheme 8) [62][63][64][65] was successful and the methylium-PF6 salts 10{4,4,8} and 10{4,4,11}, respectively, precipitated from DCM as
  • and 9, respectively, packed with up to three different pharmacophors in a single molecule. The ability to perform these reactions in ethanol and even in water, with no catalysts is noteworthy. Representative methylium salts generated by ionization with DDQ/HPF6 exhibited 1H NMR signal broadening
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2019

A chemoenzymatic synthesis of ceramide trafficking inhibitor HPA-12

  • Seema V. Kanojia,
  • Sucheta Chatterjee,
  • Subrata Chattopadhyay and
  • Dibakar Goswami

Beilstein J. Org. Chem. 2019, 15, 490–496, doi:10.3762/bjoc.15.42

Graphical Abstract
  • conversion to the appropriate intermediates and subsequent acylation with lauric acid furnished the target compound. Keywords: AD mix-β; [bmim][PF6]; DDQ; HPA-12; lipase; Introduction Ceramides belong to the family of sphingolipids (SLs) and are synthesized de-novo in the endoplasmic reticulum (ER) [1
  • -alcohol [53]. However, unlike in our case, the reaction proceeded with poor diastereoselectivity irrespective of the dihydroxylating agent used. To confirm the 1,3-anti diol stereochemistry of 7a, it was debenzylated using DDQ/CH2Cl2–H2O to furnish the trihydroxy compound 7a'. The 1H and 13C NMR spectra
  • to product 9b, which was undesirable. A similar elimination was earlier observed by Sharf et al. during hydrogenolysis of dibenzyl ether [55]. To avoid this, an oxidative debenzylation of 9a using DDQ/CH2Cl2–H2O was carried out. However, this led to a very poor yield of the target compound 2 (Scheme
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2019

Convergent synthesis of the pentasaccharide repeating unit of the biofilms produced by Klebsiella pneumoniae

  • Arin Gucchait,
  • Angana Ghosh and
  • Anup Kumar Misra

Beilstein J. Org. Chem. 2019, 15, 431–436, doi:10.3762/bjoc.15.37

Graphical Abstract
  • removal of acetyl groups and benzylation using benzyl bromide and sodium hydroxide in one-pot [37] followed by removal of the p-methoxybenzyl group using DDQ [38] in 84% overall yield. Finally, stereoselective glycosylation of disaccharide trichloroacetimidate donor 18 with trisaccharide acceptor 23 in
  • conditions: (a) TMSOTf, CH2Cl2, −10 °C, 30 min, 45%; (b) NIS, TMSOTf, MS 4 Å, CH2Cl2, −10 °C, 30 min, 40%. Reagents and conditions: (a) NIS, TMSOTf, MS 4 Å, CH2Cl2, −50 °C, 2 h, 70%; (b) benzyl bromide, NaOH, TBAB, DMF, 3 h; (c) DDQ, CH2Cl2/H2O, room temperature, 84%; (d) TMSOTf, CH2Cl2, −10 °C, 30 min, 70
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Sigmatropic rearrangements of cyclopropenylcarbinol derivatives. Access to diversely substituted alkylidenecyclopropanes

  • Guillaume Ernouf,
  • Jean-Louis Brayer,
  • Christophe Meyer and
  • Janine Cossy

Beilstein J. Org. Chem. 2019, 15, 333–350, doi:10.3762/bjoc.15.29

Graphical Abstract
  • -hindered face of the olefin was obtained predominantly (73/73’ = 90:10) albeit with lower diastereocontrol compared to the protected alcohol 58a. Cleavage of the PMB ether in 58a was achieved purposely with DDQ so that a hydroxy-directed hydrogenation of the resulting α-hydroxy ester 74 could be carried
PDF
Album
Review
Published 05 Feb 2019

Stereodivergent approach in the protected glycal synthesis of L-vancosamine, L-saccharosamine, L-daunosamine and L-ristosamine involving a ring-closing metathesis step

  • Pierre-Antoine Nocquet,
  • Aurélie Macé,
  • Frédéric Legros,
  • Jacques Lebreton,
  • Gilles Dujardin,
  • Sylvain Collet,
  • Arnaud Martel,
  • Bertrand Carboni and
  • François Carreaux

Beilstein J. Org. Chem. 2018, 14, 2949–2955, doi:10.3762/bjoc.14.274

Graphical Abstract
  • strategy based on an Evans’ aldol reaction. Mildly oxidizing conditions using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) were used for the removal of the p-methoxybenzyl (PMB) group to provide alcohols 14 (Scheme 3). Several palladium(II) catalysts have been tested for the conversion of alcohols to
  • the syn diastereomer 18 in high stereoselectivity (93:7). After silylation of the free hydroxy group, the cleavage of the PMB ether with DDQ led to alcohol 20 in 77% yield for the two steps. Ring-closing metathesis of diene 21, obtained by O-vinylation of 20, gave the dihydropyran 22 in 53% overall
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2018

Transition metal-free oxidative and deoxygenative C–H/C–Li cross-couplings of 2H-imidazole 1-oxides with carboranyl lithium as an efficient synthetic approach to azaheterocyclic carboranes

  • Lidia A. Smyshliaeva,
  • Mikhail V. Varaksin,
  • Pavel A. Slepukhin,
  • Oleg N. Chupakhin and
  • Valery N. Charushin

Beilstein J. Org. Chem. 2018, 14, 2618–2626, doi:10.3762/bjoc.14.240

Graphical Abstract
  • involve the use of DDQ as oxidant and refluxing of the reaction mixture in argon atmosphere for 1 h (Table 2, entry 12). It has also been observed that further increase in the exposure time does not improve yields (39–52%) of the target carboranyl-substituted imidazole 1-oxides 5a–d (Scheme 1). Besides
PDF
Album
Supp Info
Letter
Published 12 Oct 2018

Synthesis of aryl sulfides via radical–radical cross coupling of electron-rich arenes using visible light photoredox catalysis

  • Amrita Das,
  • Mitasree Maity,
  • Simon Malcherek,
  • Burkhard König and
  • Julia Rehbein

Beilstein J. Org. Chem. 2018, 14, 2520–2528, doi:10.3762/bjoc.14.228

Graphical Abstract
  • prefunctionalized sulfenylating reagents. Recently Lei and co-workers reported a DDQ-mediated selective radical–radical cross coupling between electron-rich arenes and thiols [40]. Miyake et al. reported the visible light-promoted cross-coupling reaction between aryl halides and arylthiols via an intermolecular
  • SCE. Other photocatalysts like Ru(bpy)3Cl2, Ru(bpz)3PF6, DDQ, acridinium dyes, Eosin Y, Eosin Y disodium salt and 4-CzIPN were evaluated, but under our reaction conditions either low substrate conversion or the degradation of the photocatalyst was observed (see Supporting Information File 1, Table S1
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2018

Synergistic approach to polycycles through Suzuki–Miyaura cross coupling and metathesis as key steps

  • Sambasivarao Kotha,
  • Milind Meshram and
  • Chandravathi Chakkapalli

Beilstein J. Org. Chem. 2018, 14, 2468–2481, doi:10.3762/bjoc.14.223

Graphical Abstract
  • -dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) to generate nitronaphthalene 15 (60%, Scheme 2). Due to their useful biological activity and intricate structural features of angucyclines such as 16–19 (Figure 2), several approaches have been reported for their assembly. In this context, de Koning and co
  • DDQ to give biaryl products 99a,b. Further, aryl halides 99a,b were subjected to SM coupling by employing various boronic acids (e.g., 4-formylphenylboronic acid (100) to produce biaryl derivative 101 (80% from 99a and 74% from 99b). Very recently, Suresh Babu and co-workers [47] demonstrated a new
PDF
Album
Review
Published 21 Sep 2018

A novel and practical asymmetric synthesis of eptazocine hydrobromide

  • Ruipeng Li,
  • Zhenren Liu,
  • Liang Chen,
  • Jing Pan,
  • Kuaile Lin and
  • Weicheng Zhou

Beilstein J. Org. Chem. 2018, 14, 2340–2347, doi:10.3762/bjoc.14.209

Graphical Abstract
  • , entry 3). When other oxidants, such as selenium oxide and manganese dioxide, were used, even at reflux temperature, no reaction took place (Table 2, entries 4 and 5). Owing to the concern of heavy metal pollution from the metal oxidant, organic oxidants were tested. Fortunately, DDQ in dioxane could
  • -dihydronaphthalen-1-one (12) To a solution of 11 (30 g, 0.14 mol) in THF (300 mL) and water (3 mL) was added in portions DDQ (63.8 g, 0.28 mol) with stirring at 0 °C. The mixture was stirred at room temperature for 2 h and evaporated under reduced pressure to dryness. The residue was taken up in dichloromethane
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2018

Hypervalent iodine compounds for anti-Markovnikov-type iodo-oxyimidation of vinylarenes

  • Igor B. Krylov,
  • Stanislav A. Paveliev,
  • Mikhail A. Syroeshkin,
  • Alexander A. Korlyukov,
  • Pavel V. Dorovatovskii,
  • Yan V. Zubavichus,
  • Gennady I. Nikishin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2018, 14, 2146–2155, doi:10.3762/bjoc.14.188

Graphical Abstract
  • system [74], (NH4)2S2O8, and DDQ were ineffective in the studied process (Table 1, entries 17–22). A satisfactory yield of 3aa (44%) was achieved using Oxone as the oxidant (Table 1, entry 15). The addition of a catalytic amount of 2-iodobenzoic acid, which forms hypervalent iodine compounds in the
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2018

Applications of organocatalysed visible-light photoredox reactions for medicinal chemistry

  • Michael K. Bogdos,
  • Emmanuel Pinard and
  • John A. Murphy

Beilstein J. Org. Chem. 2018, 14, 2035–2064, doi:10.3762/bjoc.14.179

Graphical Abstract
  • , as well as aliphatic chains. Unsurprisingly, esters and other base labile groups are not encountered. A recent publication by König and his group shows the DDQ catalysed (3DDQ Ered*(cat/cat•−) ≈ +3.18 V vs SCE) C–H amination of arenes and heteroarenes using weakly nucleophilic species such as
  • ). The reaction uses 2H-azirines and aldehydes to access the functionalised heterocycles [61]. Unlike the pyrrole-forming reaction, this protocol requires an oxidising agent, DDQ, for the desired oxazole to be obtained. This means that access to the corresponding 2,5-oxazolines is also possible
PDF
Album
Review
Published 03 Aug 2018

One hundred years of benzotropone chemistry

  • Arif Dastan,
  • Haydar Kilic and
  • Nurullah Saracoglu

Beilstein J. Org. Chem. 2018, 14, 1120–1180, doi:10.3762/bjoc.14.98

Graphical Abstract
  • ]. Firstly, dichloride 41 was reduced with LiAlH4 in ether to give the monochloride 42. The reaction of 42 with DDQ produced 4,5-benzotropone (11) in 24% yield together with 28% of starting material. The key step for 11 from 42 is the electrocyclic ring expansion of dehydrogenation product 44 to the
  • -benzotropone (11) with dimethyl barbituric acid (62) and subsequent oxidative cyclization reaction using DDQ-Sc(OTf)3 or photoirradiation under aerobic conditions afforded 61+.BF4− (Scheme 12). The pKR+ value and reduction potential of the cation 61 were studied. The relative stability of a carbocation can be
  • toward alcohols of 61+.BF4− in the auto-recycling process was also reported. However, to test the reactivity, the reactions of 61+.BF4− with a nucleophile such as NaBH4, diethylamine, and methanol were carried out to afford 7-adducts 64–66. Compound 64 was oxidized by DDQ to regenerate 61+.BF4− in good
PDF
Album
Review
Published 23 May 2018

Synthetic avenues towards a tetrasaccharide related to Streptococcus pneumonia of serotype 6A

  • Aritra Chaudhury,
  • Mana Mohan Mukherjee and
  • Rina Ghosh

Beilstein J. Org. Chem. 2018, 14, 1095–1102, doi:10.3762/bjoc.14.95

Graphical Abstract
  • ), was deacetylated quantitatively in the presence of Et3N/MeOH/H2O [35], and then stannylene-mediated selective naphthylmethylation at the O-3 position was carried out to give the known derivative 15 in 82% yield [36]. This was next benzoylated almost quantitatively to give 16. Finally DDQ-mediated
  • 93% yield. Subsequent deprotection of isopropylidene ketal with pTSA/MeOH (aq) and then benzylation furnished 20 in 95% yield over two steps. Deprotection of the naphthylmethyl group in the presence of DDQ in aqueous dichloromethane (19:1) gave the glycosyl acceptor 7 [22] in 85% yield (Scheme 3). In
  • -side of the ring. Having obtained the central disaccharide 3a in requisite yield and excellent stereochemical purity we now proceeded towards the synthesis of the trisaccharide fragment 21 (Scheme 4). Compound 3a was treated with DDQ in dichloromethane to remove the 3-O-Nap protection group generating
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2018

Selective carboxylation of reactive benzylic C–H bonds by a hypervalent iodine(III)/inorganic bromide oxidation system

  • Toshifumi Dohi,
  • Shohei Ueda,
  • Kosuke Iwasaki,
  • Yusuke Tsunoda,
  • Koji Morimoto and
  • Yasuyuki Kita

Beilstein J. Org. Chem. 2018, 14, 1087–1094, doi:10.3762/bjoc.14.94

Graphical Abstract
  • benzylmethyl groups, and the use of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) [58] or catalytic tetrabutylammonium iodide with tert-butyl hydrogen peroxide for reactions with a large excess of aromatic hydrocarbons [59]. Other than these excellent examples of metal-free methods, two protocols using a
PDF
Album
Supp Info
Letter
Published 16 May 2018

An efficient and facile access to highly functionalized pyrrole derivatives

  • Meng Gao,
  • Wenting Zhao,
  • Hongyi Zhao,
  • Ziyun Lin,
  • Dongfeng Zhang and
  • Haihong Huang

Beilstein J. Org. Chem. 2018, 14, 884–890, doi:10.3762/bjoc.14.75

Graphical Abstract
  • complete oxidation with DDQ, has been successfully developed. Further transformation with alkylamine/sodium alkoxide alcohol solution conveniently afforded novel polysubstituted pyrroles in good to excellent yields. This methodology for highly functionalized pyrroles performed well over a broad scope of
  • cycloaddition of azomethine ylides with N-alkyl maleimide, followed by a facile oxidation using DDQ as oxidant. Further manipulation with alkylamine/sodium alkoxide alcohol solution conveniently led to novel polysubstituted pyrroles in good to excellent yields (Scheme 1). Results and Discussion As shown in
  • . Unfortunately, the desired pyrrole product 12a was obtained only in 41% yield with DDQ (4 equiv) as oxidant at room temperature for 48 h (Table 3, entry 1). As expected, toluene as solvent improved the reaction outcome to afford 12a in a good yield up to 71% (Table 3, entry 2). Subsequently, reducing the amount
PDF
Album
Supp Info
Full Research Paper
Published 20 Apr 2018

Biocatalytic synthesis of the Green Note trans-2-hexenal in a continuous-flow microreactor

  • Morten M. C. H. van Schie,
  • Tiago Pedroso de Almeida,
  • Gabriele Laudadio,
  • Florian Tieves,
  • Elena Fernández-Fueyo,
  • Timothy Noël,
  • Isabel W. C. E. Arends and
  • Frank Hollmann

Beilstein J. Org. Chem. 2018, 14, 697–703, doi:10.3762/bjoc.14.58

Graphical Abstract
  • NMR (399 MHz, CDCl3) δ 9.44 (d, J = 7.7 Hz, 1H), 6.78 (dt, J = 15.6, 6.8 Hz, 1H), 6.05 (ddq, J = 15.5, 7.8, 1.3 Hz, 1H), 2.33–2.18 (m, 2H), 1.48 (h, J = 7.4 Hz, 2H), 0.90 (t, J = 7.4 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 194.3, 158.9, 133.3, 34.8, 21.3, 13.8. Michaelis–Menten kinetics of the PeAAOx
PDF
Album
Supp Info
Letter
Published 26 Mar 2018

Functionalization of N-arylglycine esters: electrocatalytic access to C–C bonds mediated by n-Bu4NI

  • Mi-Hai Luo,
  • Yang-Ye Jiang,
  • Kun Xu,
  • Yong-Guo Liu,
  • Bao-Guo Sun and
  • Cheng-Chu Zeng

Beilstein J. Org. Chem. 2018, 14, 499–505, doi:10.3762/bjoc.14.35

Graphical Abstract
  • ]. Later on, arylation, vinylation and alkynylation of glycine derivatives were also accomplished by the same group (Scheme 1) [13]. Using the Cu(OAc)2/pyrrolidine dual catalysts system, Huang developed the oxidative cross coupling of glycine derivatives with acetone in the presence of TBHP or DDQ as
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2018

5-Aminopyrazole as precursor in design and synthesis of fused pyrazoloazines

  • Ranjana Aggarwal and
  • Suresh Kumar

Beilstein J. Org. Chem. 2018, 14, 203–242, doi:10.3762/bjoc.14.15

Graphical Abstract
  • their aromatic counterparts 72 in presence of 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) in acetonitrile. Insuasty et al. [64] adapted a similar synthetic strategy for the construction of 4,7-dihydropyrazolo[3,4-b]pyridines 73 and pyrazolo[3,4-b]pyridines 74 by a three-component reaction of 5
PDF
Album
Review
Published 25 Jan 2018

Progress in copper-catalyzed trifluoromethylation

  • Guan-bao Li,
  • Chao Zhang,
  • Chun Song and
  • Yu-dao Ma

Beilstein J. Org. Chem. 2018, 14, 155–181, doi:10.3762/bjoc.14.11

Graphical Abstract
  • tetrahydroisoquinoline derivatives using DDQ and Ruppert–Prakash reagent (Scheme 31). A variety of amines proceeded smoothly to give the corresponding products in 15–90% yields under mild conditions. Based on previous literature, the author proposed a possible mechanism in Scheme 31. Firstly, oxidation of N-substituted
  • tetrahydroisoquinoline with DDQ generates dihydroquinoline salt A. Next, CuCF3, generated by the reaction of CuI and CF3TMS/KF, undergoes a nucleophilic addition with A affording the desired products and the copper salt. The generated copper salt would be reused to form CuCF3 in the nucleophilic step again. So, only a
PDF
Album
Review
Published 17 Jan 2018
Other Beilstein-Institut Open Science Activities