Search results

Search for "Lewis acid" in Full Text gives 425 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • final ring-opened adduct 37. Copper-catalyzed reactions In 2009, Pineschi and co-workers explored the Cu-catalyzed rearrangement/allylic alkylation of 2,3-diazabicyclo[2.2.1]heptenes 47 with Grignard reagents 48 (Scheme 8) [41]. The reaction is thought to proceed via the Lewis acid-catalyzed [3,4
  • success of the reaction, hypothesizing it inhibited the classical [3,3]-sigmatropic Lewis acid-catalyzed rearrangement often observed. Both alkyl and aryl Grignard reagents were amenable to the reaction; however, heteroaryl Grignard reagents resulted in poor conversion. The Cu-catalyzed borylative
  • the Lewis acid cocatalyst AgSbF6 was removed from the reaction mixture, it was noted only ring-opened 1,2-hydroxy adducts were formed, so it is likely the Lewis acid is required for dehydration. In contrast, when N-pyrimidinylbenzimidazole derivatives were used, the 1,2-C–H addition product was
PDF
Album
Review
Published 24 Apr 2023

Transition-metal-catalyzed C–H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview

  • Louis Monsigny,
  • Floriane Doche and
  • Tatiana Besset

Beilstein J. Org. Chem. 2023, 19, 448–473, doi:10.3762/bjoc.19.35

Graphical Abstract
  • functionalization of other heteroaromatic derivatives (24j, 87% yield). It should be noted that the presence of zinc triflate, a Lewis acid, was used for the activation of the electrophilic source VI. Cobalt catalysis: In 2017, Wang described the Cp*Co(III)-catalyzed trifluoromethylthiolation of 2-phenylpyridine
PDF
Album
Review
Published 17 Apr 2023

Group 13 exchange and transborylation in catalysis

  • Dominic R. Willcox and
  • Stephen P. Thomas

Beilstein J. Org. Chem. 2023, 19, 325–348, doi:10.3762/bjoc.19.28

Graphical Abstract
  • reactivity to be rendered catalytic, and exhibit catalysis outwith Lewis acid-type activation. These exchange reactions have allowed redox-neutral catalysis complementary to and beyond the redox catalysis of the transition metals. Boron, aluminium, gallium, and indium have all been demonstrated in catalytic
PDF
Album
Review
Published 21 Mar 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
  • construction of the 8-membered ring from an appropriate cyclopentane precursor. The proposed strategies include metathesis, Nozaki–Hiyama–Kishi (NHK) cyclization, Pd-mediated cyclization, radical cyclization, Pauson–Khand reaction, Lewis acid-promoted cyclization, rearrangement, cycloaddition and biocatalysis
  • precursor. The proposed strategies include metathesis, Nozaki–Hiyama–Kishi (NHK) cyclization, Pd-mediated cyclization, radical cyclization (including SmI2), Pauson–Khand reaction, Lewis acid-promoted cyclization, rearrangement, cycloaddition, and biocatalysis. In particular, the purpose will focus on the
PDF
Album
Review
Published 03 Mar 2023

Friedel–Crafts acylation of benzene derivatives in tunable aryl alkyl ionic liquids (TAAILs)

  • Swantje Lerch,
  • Stefan Fritsch and
  • Thomas Strassner

Beilstein J. Org. Chem. 2023, 19, 212–216, doi:10.3762/bjoc.19.20

Graphical Abstract
  • compounds, acylation is possible by an organic acid chloride/acid anhydride and a Lewis acid [6][7]. In the course of the development of ionic liquids (ILs) as a reaction medium for chemical reactions [8][9], the Friedel–Crafts reaction was also examined [10][11][12][13][14][15][16]. First protocols were
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2023

1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures

  • Bram Ryckaert,
  • Ellen Demeyere,
  • Frederick Degroote,
  • Hilde Janssens and
  • Johan M. Winne

Beilstein J. Org. Chem. 2023, 19, 115–132, doi:10.3762/bjoc.19.12

Graphical Abstract
  • analog 26 should also be a reactive dienophile [51], but is a less useful building block, as it reacts twice and the adducts will not be as easily desulfonylated. The dienophile 7 reacts with a wide range of dienes at room temperature, without the need for a Lewis acid catalyst. This is particularly
  • give difficulties (Scheme 11a) [42]. The reactivity of the oxy-electrophiles can be enhanced by adding a Lewis acid catalyst such as titanium(IV) isopropoxide [59]. In this way, also epoxides can be smoothly reacted with lithiated dithiins, and both allyl and homoallyl alcohols can thus be prepared in
  • alcohol 66 can be lithitated and reacted with a range of electrophiles, even without the need for a Lewis acid catalyst, and good levels of stereoinduction can be achieved. The method was used for the synthesis of a range of hexose sugars, as well as iminosugars (viz 66 → 67 → 68), wherein the piperidine
PDF
Album
Review
Published 02 Feb 2023

Organophosphorus chemistry: from model to application

  • György Keglevich

Beilstein J. Org. Chem. 2023, 19, 89–90, doi:10.3762/bjoc.19.8

Graphical Abstract
  • . elaborated a Lewis acid-catalyzed one-pot synthesis of phosphinates and phosphonates staring from pyridinecarboxaldehydes and diarylphosphine oxides [2]. This protocol is the analogy of the Pudovik reaction, followed by the phospha-Brook rearrangement applied mainly for the synthesis of phosphoric ester
PDF
Editorial
Published 25 Jan 2023

Catalytic aza-Nazarov cyclization reactions to access α-methylene-γ-lactam heterocycles

  • Bilge Banu Yagci,
  • Selin Ezgi Donmez,
  • Onur Şahin and
  • Yunus Emre Türkmen

Beilstein J. Org. Chem. 2023, 19, 66–77, doi:10.3762/bjoc.19.6

Graphical Abstract
  • using acyl chloride 6b with an isobutyl side chain is its low volatility in contrast to the highly volatile compound 6a. The aza-Nazarov product 7b was isolated in 61% yield with 20 mol % of AgOTf at 80 °C (Table 1, entry 5). The use of TMSOTf as a Si-based Lewis acid catalyst with 20 mol % loading
  • of catalyzing the reaction via anion binding, AgOTf stands out as the optimal Lewis acid for this transformation. The aza-Nazarov cyclization of 3,4-dihydroisoquinolines with TMS-substituted α,β-unsaturated acyl chlorides proceeds efficiently in the presence of AgOTf (20 mol %) in CH3CN at 80 °C to
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2023

Synthetic study toward tridachiapyrone B

  • Morgan Cormier,
  • Florian Hernvann and
  • Michaël De Paolis

Beilstein J. Org. Chem. 2022, 18, 1741–1748, doi:10.3762/bjoc.18.183

Graphical Abstract
  • , as illustrated by Baldwin in the synthesis of 9,10-deoxytridachione [18]. In a further demonstration of the versatility of tetraenes connected to α’-methoxy-γ-pyrone, the synthesis of both crispatene and photodeoxytridachione was accomplished by Trauner through the Lewis acid-catalyzed 6π-disrotatory
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2022

Preparation of β-cyclodextrin-based dimers with selectively methylated rims and their use for solubilization of tetracene

  • Konstantin Lebedinskiy,
  • Volodymyr Lobaz and
  • Jindřich Jindřich

Beilstein J. Org. Chem. 2022, 18, 1596–1606, doi:10.3762/bjoc.18.170

Graphical Abstract
  • somewhat, giving us a 41% yield after 12 h of the reaction. Testing the same conditions for dimer 5, we also noticed a speed up in the reaction rate, but a presence of the trimer with an extra CD moiety connected by carbamate group (Mr ≈ 4000) was spotted, giving us lower yields. We assume the Lewis acid
  • methylated primary rim based on the remarkable methylation ability of methyl tosylate with relatively mild bases at solvent-free conditions has been developed. It has been proved that using Lewis acid in the phosphine imide reactions with CDs can increase the reactivity of some low-reactive compounds, giving
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2022

Ionic multiresonant thermally activated delayed fluorescence emitters for light emitting electrochemical cells

  • Merve Karaman,
  • Abhishek Kumar Gupta,
  • Subeesh Madayanad Suresh,
  • Tomas Matulaitis,
  • Lorenzo Mardegan,
  • Daniel Tordera,
  • Henk J. Bolink,
  • Sen Wu,
  • Stuart Warriner,
  • Ifor D. Samuel and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2022, 18, 1311–1321, doi:10.3762/bjoc.18.136

Graphical Abstract
  • 23% overall yield. First, hydrolysis of 1, in situ conversion to the acyl chloride and subsequent Lewis acid-promoted Friedel–Crafts acylation reaction produced compound 2 (Scheme 1), where the AlCl3 was also responsible for the demethylation. Compound 2 was then subjected to monoalkylation with 1,4
PDF
Album
Supp Info
Full Research Paper
Published 22 Sep 2022

Vicinal ketoesters – key intermediates in the total synthesis of natural products

  • Marc Paul Beller and
  • Ulrich Koert

Beilstein J. Org. Chem. 2022, 18, 1236–1248, doi:10.3762/bjoc.18.129

Graphical Abstract
  • the desired α-carbonyl group. (−)-Preussochromone A In 2020, the Koert group disclosed the synthesis of (−)-preussochromone A (24), a fungal metabolite with a highly substituted tetrahydrothiopyrane core annulated to a chromenone [10]. The tetrahydrothiopyrane ring was closed by a Lewis-acid-promoted
  • 27. Subsequent oxidation gave α-ketoester 28 which was used in an intramolecular, Lewis acid-mediated aldol reaction, presumably via tridentate complex transition state III, to give diol 29 as a single diastereomer. Inversion of the secondary alcohol and deprotection gave preussochromone D (30
PDF
Album
Review
Published 15 Sep 2022

Dienophilic reactivity of 2-phosphaindolizines: a conceptual DFT investigation

  • Nosheen Beig,
  • Aarti Peswani and
  • Raj Kumar Bansal

Beilstein J. Org. Chem. 2022, 18, 1217–1224, doi:10.3762/bjoc.18.127

Graphical Abstract
  • -phosphaindolizines having an EWG at the 3-position only, namely 3-ethoxycarbonyl-1-methyl-2-phosphaindolizine (1: R1 = Me, R2 = COOEt) did not undergo the DA reaction with DMB alone or in the presence of sulfur even when refluxing in toluene [12]. The reaction could be accomplished only in the presence of a Lewis
  • acid catalyst, namely ethylaluminum dichloride [13]. Furthermore, when carrying out the reaction of compounds 1 (R1 = Me, R2 = COOMe, COOEt, COOCMe3) with DMB in the presence of the catalyst O-menthoxyaluminium dichloride, generated in situ, complete diastereoselectivity was observed. The DA reactions
PDF
Album
Supp Info
Full Research Paper
Published 13 Sep 2022

Lewis acid-catalyzed Pudovik reaction–phospha-Brook rearrangement sequence to access phosphoric esters

  • Jin Yang,
  • Dang-Wei Qian and
  • Shang-Dong Yang

Beilstein J. Org. Chem. 2022, 18, 1188–1194, doi:10.3762/bjoc.18.123

Graphical Abstract
  • Herein, we report a Lewis acid-catalyzed Pudovik reaction–phospha-Brook rearrangement sequence between diarylphosphonates or -phosphinates and α-pyridinealdehydes to access valuable phosphoric ester compounds. This transformation provides an extended substrate scope that is complementary to similar
  • previously reported base-catalyzed transformations. Keywords: Lewis acid; phospha-Brook rearrangement; phosphoric esters; Pudovik reaction; Introduction Phosphoric esters are widely used in agrochemistry, biological sciences, clinical treatments, as well as in general organic transformations [1][2][3][4][5
  • [46][47][48][49]. Thus, searching for an alternative catalytic system, for example, a mild Lewis acid-catalyzed system, to achieve a wide applicability and provide a substrate scope complementary to previously reported base-catalyzed reactions, is a highly desirable task. However, such a process is
PDF
Album
Supp Info
Letter
Published 09 Sep 2022

Reductive opening of a cyclopropane ring in the Ni(II) coordination environment: a route to functionalized dehydroalanine and cysteine derivatives

  • Oleg A. Levitskiy,
  • Olga I. Aglamazova,
  • Yuri K. Grishin and
  • Tatiana V. Magdesieva

Beilstein J. Org. Chem. 2022, 18, 1166–1176, doi:10.3762/bjoc.18.121

Graphical Abstract
  • thermodynamic stability (1.3:1, see Supporting Information File 1). Notably, the coordination to the Lewis acid increases the regioselectivity of protonation in the allylic anions formed in the electrolysis. Thus, using LiCl as a supporting electrolyte increases the ratio to 5:1. An even more pronounced effect
  • can be achieved if the electrolysis is performed in the undivided cell equipped with a Zn or Mg anode. In this case, the anodically generated Zn2+ or Mg2+ worked as Lewis acid and the isomeric α-β and β-γ alkene complexes are formed in 54:1 ratio (though the total yield is decreased to 50%). In case
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2022

Scope of tetrazolo[1,5-a]quinoxalines in CuAAC reactions for the synthesis of triazoloquinoxalines, imidazoloquinoxalines, and rhenium complexes thereof

  • Laura Holzhauer,
  • Chloé Liagre,
  • Olaf Fuhr,
  • Nicole Jung and
  • Stefan Bräse

Beilstein J. Org. Chem. 2022, 18, 1088–1099, doi:10.3762/bjoc.18.111

Graphical Abstract
  • reaction to take place. The increase of the amount of catalyst did not significantly improve the yield, while the addition of a base (DIPEA) or Lewis acid (AlCl3) resulted in suppression of imidazole formation and almost complete conversion to the amine 17. Addition of Zn(OTf)2 reduced the yield of the
PDF
Album
Supp Info
Full Research Paper
Published 24 Aug 2022

Electrochemical Friedel–Crafts-type amidomethylation of arenes by a novel electrochemical oxidation system using a quasi-divided cell and trialkylammonium tetrafluoroborate

  • Hisanori Senboku,
  • Mizuki Hayama and
  • Hidetoshi Matsuno

Beilstein J. Org. Chem. 2022, 18, 1040–1046, doi:10.3762/bjoc.18.105

Graphical Abstract
  • : electrochemical oxidation of amides/carbamates yielding α-methoxylated amides/carbamates (Shono oxidation, path c in Scheme 1) followed by the reaction of the isolated α-methoxylated amides/carbamates with arenes in the presence of a Lewis acid catalyst (path e in Scheme 1) [16]. Although the use of CH2Cl2 as a
PDF
Album
Supp Info
Letter
Published 18 Aug 2022

Post-synthesis from Lewis acid–base interaction: an alternative way to generate light and harvest triplet excitons

  • Hengjia Liu and
  • Guohua Xie

Beilstein J. Org. Chem. 2022, 18, 825–836, doi:10.3762/bjoc.18.83

Graphical Abstract
  • fluorescent materials containing Lewis basic nitrogen heterocycles are more likely to provide the feasible band gap modulation. The essence of such phenomenon originates from Lewis acid–base coordination and adducts, which highly depends on the electron-accepting property of the Lewis acids. This
  • intermolecular mechanism, considered as post-synthesis of new luminescent compounds offers promising applications in sensing and electroluminescence by manipulating the frontier molecular orbital energy levels of organic conjugated materials, simply based on Lewis acid–base chemistry. Keywords: excitons
  • ; fluorescence; Lewis acid; Lewis base; post-synthesis; Introduction Organic light emitting diodes (OLEDs) show great potential to dominate the next generation of flat-panel displays and efficient light sources attributed to the advantages of self-illumination, high efficiency, wide color gamut, and flexibility
PDF
Album
Review
Published 12 Jul 2022

Copper-catalyzed multicomponent reactions for the efficient synthesis of diverse spirotetrahydrocarbazoles

  • Shao-Cong Zhan,
  • Ren-Jie Fang,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2022, 18, 796–808, doi:10.3762/bjoc.18.80

Graphical Abstract
  • different kinds of aromatic aldehydes and 5-arylidene-1,3-dimethylbarbituric acids. 5-Arylidene-1,3-dimethylbarbituric acids could be easily generated through Knoevenagel condensation of aromatic aldehydes and 1,3-dimethylbarbituric acid under the catalysis of Lewis acid. We envisioned whether the desired
  • protocol by Lewis acid CuSO4 catalyzed reaction. Based on the above experimental results and the previously works [75][76][77], a plausible reaction pathway is illustrated in Scheme 7. At first, 2-methylindole reacts with aromatic aldehydes in the presence of the catalyst CuSO4 to generate the intermediate
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

Synthesis of odorants in flow and their applications in perfumery

  • Merlin Kleoff,
  • Paul Kiler and
  • Philipp Heretsch

Beilstein J. Org. Chem. 2022, 18, 754–768, doi:10.3762/bjoc.18.76

Graphical Abstract
  • SAC-13, alkylation of m-cresol with isopropanol proceeds via a Friedel–Crafts-type mechanism in much lower selectivity. In contrast, the authors proposed that employing γ-Al2O3 as Lewis acid catalyst, reaction of 39 and isopropanol leads to isopropyl ether 40. This intermediate undergoes a Fries-type
PDF
Album
Review
Published 27 Jun 2022

BINOL as a chiral element in mechanically interlocked molecules

  • Matthias Krajnc and
  • Jochen Niemeyer

Beilstein J. Org. Chem. 2022, 18, 508–523, doi:10.3762/bjoc.18.53

Graphical Abstract
  • for the non-interlocked mixture, see Figure 15). DFT calculations showed that the reaction takes place by cooperative action of the Li phosphate macrocycle and the amine thread, enabled by the mechanical bond. The Li phosphate acts as a Lewis acid to activate the malonic acid diethyl ester, which is
PDF
Album
Review
Published 06 May 2022

A Se···O bonding catalysis approach to the synthesis of calix[4]pyrroles

  • Qingzhe Tong,
  • Zhiguo Zhao and
  • Yao Wang

Beilstein J. Org. Chem. 2022, 18, 325–330, doi:10.3762/bjoc.18.36

Graphical Abstract
  • , several synthetic methods to access these compounds have been reported [54][55]. The classical approaches to synthesis of calix[4]pyrrole derivatives mainly involved a stepwise synthesis and Lewis acid as well as Brønsted acid catalysis [54][55]. Notably, a noncovalent catalysis approach to accessing
PDF
Album
Supp Info
Letter
Published 18 Mar 2022

Recent developments and trends in the iron- and cobalt-catalyzed Sonogashira reactions

  • Surendran Amrutha,
  • Sankaran Radhika and
  • Gopinathan Anilkumar

Beilstein J. Org. Chem. 2022, 18, 262–285, doi:10.3762/bjoc.18.31

Graphical Abstract
  • of the alkyl halide and C–H activation can be increased by the presence of active Lewis acid sites on the iron(III) nanoparticles. The scope for this catalytic system can be figured out by the presence of high temperature, high ligand concentration and activated ligands. Chen and co-workers
PDF
Album
Review
Published 03 Mar 2022

1,2-Naphthoquinone-4-sulfonic acid salts in organic synthesis

  • Ruan Carlos B. Ribeiro,
  • Patricia G. Ferreira,
  • Amanda de A. Borges,
  • Luana da S. M. Forezi,
  • Fernando de Carvalho da Silva and
  • Vitor F. Ferreira

Beilstein J. Org. Chem. 2022, 18, 53–69, doi:10.3762/bjoc.18.5

Graphical Abstract
  • reactions, and pericyclic reactions. Yoshida and co-workers [100] demonstrated that some metal ions are capable of activating aromatic compounds by chelation and promoting nucleophilic additions. For instance, 1-aminoanthraquinone quickly reacts with butylamine under the influence of Lewis acid catalysts to
PDF
Album
Review
Published 05 Jan 2022

Iron-catalyzed domino coupling reactions of π-systems

  • Austin Pounder and
  • William Tam

Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196

Graphical Abstract
  • oxidative addition, transmetallation, and reductive elimination processes. On the other hand, iron may act as a Lewis acid, activating carbon–carbon multiple bonds via π-binding or heteroatoms via σ-complexes. This can either generate the organoiron complex after nucleophilic attack or produce a carbocation
PDF
Album
Review
Published 07 Dec 2021
Other Beilstein-Institut Open Science Activities