Search results

Search for "copper" in Full Text gives 698 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

When metal-catalyzed C–H functionalization meets visible-light photocatalysis

  • Lucas Guillemard and
  • Joanna Wencel-Delord

Beilstein J. Org. Chem. 2020, 16, 1754–1804, doi:10.3762/bjoc.16.147

Graphical Abstract
  • concerned the development of “classical” C–H activation reactions, while a photoredox cycle was implemented to reoxidize the metal catalyst, thus obviating the need for a stoichiometric amount of metal-based oxidants, such as silver or copper salts. In parallel, dual synergistic catalysis has emerged. In
  • good yields and the authors applied the methodology for the late-stage acylation of natural ʟ-tryptophan as well as carbazole derivatives. Cu-catalyzed transformations Sporadic examples using copper as transition metal for C–H functionalization reactions in combination with photocatalysis were also
  • photoinduced by visible light was promoted by copper and used the bidentate 8-aminoquinoline moiety as the DG (Figure 33) [98]. Remarkably, eosin Y, a cheap organic photocatalyst, enhanced the generation of perfluoroalkyl radicals from the corresponding alkyl iodides but a stoichiometric amount of a simple
PDF
Album
Review
Published 21 Jul 2020

Clickable azide-functionalized bromoarylaldehydes – synthesis and photophysical characterization

  • Dominik Göbel,
  • Marius Friedrich,
  • Enno Lork and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2020, 16, 1683–1692, doi:10.3762/bjoc.16.139

Graphical Abstract
  • cycloadditions with model alkynes. Besides two ortho- and para-bromo-substituted benzaldehydes, the azide functionalization of a fluorene-based structure will be presented. The copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC) of the so-synthesized azide-functionalized bromocarbaldehydes with terminal
  • oxazoline 24, oxazolidine 27 cyclized already during the reaction, caused by the increased basicity of the ring nitrogen. CuAAC reactions of bromocarbaldehydes We further investigated the reactivity of azide-functionalized bromocarbaldehydes 3, 4, and 5 in copper(I)-catalyzed azide–alkyne cycloaddition
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2020

Pauson–Khand reaction of fluorinated compounds

  • Jorge Escorihuela,
  • Daniel M. Sedgwick,
  • Alberto Llobat,
  • Mercedes Medio-Simón,
  • Pablo Barrio and
  • Santos Fustero

Beilstein J. Org. Chem. 2020, 16, 1662–1682, doi:10.3762/bjoc.16.138

Graphical Abstract
  • obtained using the less reactive triphenylphosphine dicobaltpentacarbonyl complex 63 as the catalyst (Scheme 35). In a later study [72], Riera and Fustero generalized the use of trifluoromethylalkynes as substrates for the PKR. The copper-catalyzed trifluoromethylation of terminal alkynes described by Qing
PDF
Album
Review
Published 14 Jul 2020

Azidophosphonium salt-directed chemoselective synthesis of (E)/(Z)-cinnamyl-1H-triazoles and regiospecific access to bromomethylcoumarins from Morita–Baylis–Hillman adducts

  • Soundararajan Karthikeyan,
  • Radha Krishnan Shobana,
  • Kamarajapurathu Raju Subimol,
  • J. Helen Ratna Monica and
  • Ayyanoth Karthik Krishna Kumar

Beilstein J. Org. Chem. 2020, 16, 1579–1587, doi:10.3762/bjoc.16.130

Graphical Abstract
  • initiates the allylic rearrangement and thereby facilitates the removal of the crucial phosphonium oxide. The outcome of this process is the structurally relevant azido moiety IIIa, which then undergoes a 1,3-dipolar cycloaddition with the copper acetylide IVa to furnish the 1,4-disubstituted 1,2,3
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2020

The McKenna reaction – avoiding side reactions in phosphonate deprotection

  • Katarzyna Justyna,
  • Joanna Małolepsza,
  • Damian Kusy,
  • Waldemar Maniukiewicz and
  • Katarzyna M. Błażewska

Beilstein J. Org. Chem. 2020, 16, 1436–1446, doi:10.3762/bjoc.16.119

Graphical Abstract
  • for the formation of product 15, we investigated whether the copper wire, used as a stabilizer in commercially available BTMS, could induce the observed cyclization, as was reported in the literature [37]. For that purpose, we compared the reaction run using commercially available BTMS, stabilized
  • with copper wire with that using BTMS distilled prior to use but contaminated with CuBr (Table 1, entries 2 and 3). In both cases the byproducts 15–17 formed. However, when propargylamide 10 was subjected to the reaction with CuBr, in the absence of BTMS and phosphonoacetate, only starting material was
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2020

Disposable cartridge concept for the on-demand synthesis of turbo Grignards, Knochel–Hauser amides, and magnesium alkoxides

  • Mateo Berton,
  • Kevin Sheehan,
  • Andrea Adamo and
  • D. Tyler McQuade

Beilstein J. Org. Chem. 2020, 16, 1343–1356, doi:10.3762/bjoc.16.115

Graphical Abstract
  • combined with a solution-phase reagent, including: (1) copper(I) oxide to produce N-heterocyclic carbene–Cu(I) complexes for use as catalysts [13]; (2) proline to perform proline-based catalytic reactions [14]; (3) zinc powder to produce organozinc halides in tandem with Negishi couplings [15]; (4) zinc
PDF
Album
Supp Info
Full Research Paper
Published 19 Jun 2020

Oxime radicals: generation, properties and application in organic synthesis

  • Igor B. Krylov,
  • Stanislav A. Paveliev,
  • Alexander S. Budnikov and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2020, 16, 1234–1276, doi:10.3762/bjoc.16.107

Graphical Abstract
  • Cu(ClO4)2 afforded a better yield of the C–O coupling product 48 then the manganese-based oxidants in this case (Scheme 17) [94]. A radical mechanism was suggested. The copper(II) ion reacts with oxime 19 to generate iminoxyl radical 20 and also forms complex 49 with dinitrile 47. Interaction of
  • oximes reacted with esters and ketones to give oxidative coupling products in moderate to good yields (products 55a–e and 56a–e, respectively). In the case of asymmetric ketones, the C–H bond at the more substituted carbon was cleaved (products 56d,e). Recently, the copper-catalyzed addition of oximes to
  • the C=C double bond of maleimides was reported [96]. The iminoxyl radicals were detected by EPR spectroscopy, but the non-radical mechanism (copper-catalyzed Michael addition) can not be excluded completely. Application of the oxime radicals in organic synthesis: intramolecular reactions There are two
PDF
Album
Review
Published 05 Jun 2020

Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis

  • Stephanie G. E. Amos,
  • Marion Garreau,
  • Luca Buzzetti and
  • Jerome Waser

Beilstein J. Org. Chem. 2020, 16, 1163–1187, doi:10.3762/bjoc.16.103

Graphical Abstract
  • similar strategy for radical generations was applied by Glorius and co-workers. They exploited a combination of organophotoredox and copper catalysis to achieve the conversion of carboxylic acids into alkenes using N,N-diaryldihydrophenazine as an organic photocatalyst [46]. Rose bengal (OD15) was also
PDF
Album
Review
Published 29 May 2020

Synthesis and properties of quinazoline-based versatile exciplex-forming compounds

  • Rasa Keruckiene,
  • Simona Vekteryte,
  • Ervinas Urbonas,
  • Matas Guzauskas,
  • Eigirdas Skuodis,
  • Dmytro Volyniuk and
  • Juozas V. Grazulevicius

Beilstein J. Org. Chem. 2020, 16, 1142–1153, doi:10.3762/bjoc.16.101

Graphical Abstract
  • , bearing a quinazoline unit as the acceptor core and carbazole, dimethyldihydroacridine, or phenothiazine donor moieties, were designed and synthesized in two steps including a facile copper-catalyzed cyclization and a nucleophilic aromatic substitution reaction. The photophysical properties of the
  • (purchased from Aldrich), 9H-carbazole, copper(II) chloride (purchased from Reakhim), and 2,7-di-tert-butyl-9,9-dimethyl-9,10-dihydroacridine (purchased from Center for Physical Sciences and Technology) were used as received. Thin-layer chromatography was performed using TLC plates covered with silica gel
  • . After completion of the reaction, water was added to the mixture until precipitation appeared. The precipitate was collected by filtration and washed with plenty of water to remove excess CuCl2, NH4OAc, and reduced copper salt. Compound Q1 (1.4 g, 78%) was obtained as yellowish crystals. 1H NMR (400 MHz
PDF
Album
Full Research Paper
Published 28 May 2020

Synthesis and anticancer activity of bis(2-arylimidazo[1,2-a]pyridin-3-yl) selenides and diselenides: the copper-catalyzed tandem C–H selenation of 2-arylimidazo[1,2-a]pyridine with selenium

  • Mio Matsumura,
  • Tsutomu Takahashi,
  • Hikari Yamauchi,
  • Shunsuke Sakuma,
  • Yukako Hayashi,
  • Tadashi Hyodo,
  • Tohru Obata,
  • Kentaro Yamaguchi,
  • Yasuyuki Fujiwara and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2020, 16, 1075–1083, doi:10.3762/bjoc.16.94

Graphical Abstract
  • ]pyridin-3-yl] diselenide showed an excellent anticancer activity and low cytotoxicity toward noncancer cells, suggesting that this diselenide is a potential lead compound for anticancer therapy. Keywords: anticancer activity; copper catalyst; diselenide; imidazopyridine; selenide; selenium; Introduction
  • ). The interconversion of the diselenide 2 and the selenide 3 is also possibility in this reaction, with the expected mechanism shown in Scheme 3. The oxidative addition of the copper catalyst to the diselenide 2 generates the intermediate E, which is then attacked by an imidazopyridine 1 at the 3
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2020

Copper-based fluorinated reagents for the synthesis of CF2R-containing molecules (R ≠ F)

  • Louise Ruyet and
  • Tatiana Besset

Beilstein J. Org. Chem. 2020, 16, 1051–1065, doi:10.3762/bjoc.16.92

Graphical Abstract
  • of fluorine-containing molecules in the pharmaceutical and agrochemical industries. In a world eager to eco-friendlier tools, the need for innovative methods has been growing. To address these two challenges, copper-based reagents were developed to introduce CF2H, CF2RF, CF2CH3, CF2PO(OEt)2 and
  • CF2SO2Ph motifs on a broad range of substrates. Copper-based fluorinated reagents have the advantage of being inexpensive and generally in situ generated or prepared in a few steps, which make them convenient to use. In this review, an overview of the recent advances made for the synthesis of fluorinated
  • molecules using copper-based fluorinated reagents will be given. Keywords: copper; difluoromethylation; fluorinated reagents; fluorine chemistry; synthetic methodologies; Introduction In a society in which fluorinated molecules are playing a pivotal role in pharmaceutical and agrochemical industries as
PDF
Album
Review
Published 18 May 2020

Fluorinated phenylalanines: synthesis and pharmaceutical applications

  • Laila F. Awad and
  • Mohammed Salah Ayoup

Beilstein J. Org. Chem. 2020, 16, 1022–1050, doi:10.3762/bjoc.16.91

Graphical Abstract
  • -[18F]fluorophenylalanines 72a,b [54] were achieved by a copper-mediated nucleophilic radiofluorination of arylstannanes 71a,b with [18F]KF (Scheme 17). 1.6. Alkylation of benzophenone imine of glycine ester Pentafluoro-ʟ-phenylalanine (77a) and 2,4-ditrifluoromethyl-ʟ-phenylalanine (77b) were
PDF
Album
Review
Published 15 May 2020

Copper-catalysed alkylation of heterocyclic acceptors with organometallic reagents

  • Yafei Guo and
  • Syuzanna R. Harutyunyan

Beilstein J. Org. Chem. 2020, 16, 1006–1021, doi:10.3762/bjoc.16.90

Graphical Abstract
  • Yafei Guo Syuzanna R. Harutyunyan Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands 10.3762/bjoc.16.90 Abstract Copper-catalysed asymmetric C–C bond-forming reactions using organometallic reagents have developed into a powerful tool for
  • chiral natural products and bioactive molecules. Hence, this review focuses on the progress made over the past 20 years for heterocyclic acceptors. Keywords: conjugate addition; copper catalysis; heterocyclic Michael acceptor; organometallics; Introduction The copper-catalysed asymmetric addition of
  • strategies that target the synthesis of chiral heterocyclic motives [12][13][14]. Among these, methodologies based on the copper-catalysed asymmetric addition of organometallics are especially valuable because of i) the compatibility between copper catalysts and heteroatoms present in the starting materials
PDF
Album
Review
Published 14 May 2020

Accelerating fragment-based library generation by coupling high-performance photoreactors with benchtop analysis

  • Quentin Lefebvre,
  • Christophe Salomé and
  • Thomas C. Fessard

Beilstein J. Org. Chem. 2020, 16, 982–988, doi:10.3762/bjoc.16.87

Graphical Abstract
  • reactions, and ranged from 6% to 50% for copper-catalyzed cross-coupling reactions [13]. Much information could be obtained from this screening. Electron-deficient aryl bromides led to better yields than neutral and electron-rich partners, as observed in previous reports on photochemically- or
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2020

Cation-induced ring-opening and oxidation reaction of photoreluctant spirooxazine–quinolizinium conjugates

  • Phil M. Pithan,
  • Sören Steup and
  • Heiko Ihmels

Beilstein J. Org. Chem. 2020, 16, 904–916, doi:10.3762/bjoc.16.82

Graphical Abstract
  • ), 6.74 (d, 7’-H), 2.76 (s, NMe), 1.44 (s, 3’-Me), and 1.38 (s, 3’-Me, Figure 5A and Figure S6A, Supporting Information File 1). With increasing copper ion concentration, the signal intensities decreased, and a new set of signals developed, which only consisted of 18 protons in the aromatic region (Figure
  •  5B–F and Figure S6B–F, Supporting Information File 1). Notably, a third set of signals was detected when employing copper-to-ligand ratios of 0.25 and 0.50 (Figure 5B,C and Figure S6B,C, Supporting Information File 1, marked with green asterisks). While the signals in the aromatic region could not be
  • conditions, indicating an electron transfer from a reaction intermediate to the copper ions. In addition, we tested whether 4a may also be formed upon the addition of the previously not employed Fe3+ ion as this also acts as a strong electron acceptor (Figure 6B). Indeed, the addition of Fe3+ to 3a resulted
PDF
Album
Supp Info
Full Research Paper
Published 05 May 2020

Copper catalysis with redox-active ligands

  • Agnideep Das,
  • Yufeng Ren,
  • Cheriehan Hessin and
  • Marine Desage-El Murr

Beilstein J. Org. Chem. 2020, 16, 858–870, doi:10.3762/bjoc.16.77

Graphical Abstract
  • Agnideep Das Yufeng Ren Cheriehan Hessin Marine Desage-El Murr Université de Strasbourg, Institut de Chimie, UMR CNRS 7177, 67000 Strasbourg, France Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 75005 Paris, France 10.3762/bjoc.16.77 Abstract Copper catalysis finds
  • applications in various synthetic fields by utilizing the ability of copper to sustain mono- and bielectronic elementary steps. Further to the development of well-defined copper complexes with classical ligands such as phosphines and N-heterocyclic carbenes, a new and fast-expanding area of research is
  • electron transfer. This review aims to present the latest results in the area of copper-based cooperative catalysis with redox-active ligands. Keywords: bioinspired catalysis; biomimetic copper complexes; cooperative catalysis; redox-active ligands; redox catalysis; Introduction Interaction of earth
PDF
Album
Review
Published 24 Apr 2020

Recent advances in Cu-catalyzed C(sp3)–Si and C(sp3)–B bond formation

  • Balaram S. Takale,
  • Ruchita R. Thakore,
  • Elham Etemadi-Davan and
  • Bruce H. Lipshutz

Beilstein J. Org. Chem. 2020, 16, 691–737, doi:10.3762/bjoc.16.67

Graphical Abstract
  • incorporating silicon or boron into new or existing drugs, in addition to their use as building blocks in cross-coupling reactions en route to various targets of both natural and unnatural origins. In this review, recent protocols relying on copper-catalyzed sp3 carbon–silicon and carbon–boron bond-forming
  • reactions are discussed. Keywords: C–B bonds; copper catalysis; C–Si bonds; enantioselective reactions; sp3 carbon functionalization; Introduction Transition-metal-catalyzed silylation and borylation are useful transformations [1], widely studied because organosilicon [2][3] and organoboron compounds [4
  • interesting class of substrates for medicinal and polymer chemistry. Nevertheless, they can be transformed into a variety of building blocks for subsequent use in complex molecule synthesis. The first example of a copper-catalyzed C(sp3)–Si bond formation was reported by Oshima and co-workers in 1984 [25]. In
PDF
Album
Review
Published 15 Apr 2020

Towards the total synthesis of chondrochloren A: synthesis of the (Z)-enamide fragment

  • Jan Geldsetzer and
  • Markus Kalesse

Beilstein J. Org. Chem. 2020, 16, 670–673, doi:10.3762/bjoc.16.64

Graphical Abstract
  • obtained through a seven-step sequence starting from ᴅ-ribonic acid-1,4-lactone. The (Z)-vinyl bromide 4 is accessible in four steps from 4-hydroxybenzaldehyde. The pivotal cross coupling between both fragments was achieved after extensive experimentation with copper(I) iodide, K2CO3 and N,N
  • formation of the (Z)-enamide should occur in a copper-catalyzed Buchwald-type reaction (Scheme 3). Based on a previous work of Buchwald and his group [13], we decided to use copper(I) iodide and N,N′-dimethylethylenediamine (DMEDA) as the catalytic system in THF, which was reported to be the solvent of
  • the indicative NMR coupling constants of 9.6 Hz. Moreover, we observed a concentration dependent formation of the undesired desilylated (Z)-enamide 17 (Table 1). The best results were achieved using a 65 mM solution of the amide 3. Using dry potassium carbonate, purified copper(I) iodide provided the
PDF
Album
Supp Info
Full Research Paper
Published 14 Apr 2020

Copper-catalyzed O-alkenylation of phosphonates

  • Nuria Vázquez-Galiñanes,
  • Mariña Andón-Rodríguez,
  • Patricia Gómez-Roibás and
  • Martín Fañanás-Mastral

Beilstein J. Org. Chem. 2020, 16, 611–615, doi:10.3762/bjoc.16.56

Graphical Abstract
  • /bjoc.16.56 Abstract Copper catalysis allows the direct oxygen alkenylation of dialkyl phosphonates with alkenyl(aryl)iodonium salts with selective transfer of the alkenyl group. This novel methodology proceeds with a wide range of phosphonates under mild conditions and gives straightforward access to
  • valuable enol phosphonates in very good yields. Keywords: alkenylation; copper; C(sp2)–O bond formation; hypervalent iodine; phosphonates; Introduction Organophosphorus compounds represent an important class of products with a wide range of applications in biology, agriculture and synthetic organic
  • (alkenyl)iodonium salts, which are air- and moisture-stable, nontoxic and easy to prepare compounds, have become efficient reagents for mild and selective arylation and alkenylation reactions in organic synthesis [16][17][18]. In particular, the use of these hypervalent iodine reagents in copper catalysis
PDF
Album
Supp Info
Letter
Published 03 Apr 2020

Regioselectively α- and β-alkynylated BODIPY dyes via gold(I)-catalyzed direct C–H functionalization and their photophysical properties

  • Takahide Shimada,
  • Shigeki Mori,
  • Masatoshi Ishida and
  • Hiroyuki Furuta

Beilstein J. Org. Chem. 2020, 16, 587–595, doi:10.3762/bjoc.16.53

Graphical Abstract
  • -tethered BODIPY derivatives serve as a substrate in the copper-catalyzed azide–alkyne cycloaddition (CuAAC) reaction, which is known as “click” reaction, allowing for a biological tissue labelling [35][36]. In addition, ethynyl-substituted BODIPYs yield unique π-conjugated BODIPY-based macrocycles by
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2020

A systematic review on silica-, carbon-, and magnetic materials-supported copper species as efficient heterogeneous nanocatalysts in “click” reactions

  • Pezhman Shiri and
  • Jasem Aboonajmi

Beilstein J. Org. Chem. 2020, 16, 551–586, doi:10.3762/bjoc.16.52

Graphical Abstract
  • Pezhman Shiri Jasem Aboonajmi Department of Chemistry, Shiraz University, Shiraz, Iran 10.3762/bjoc.16.52 Abstract In recent years, many inorganic silica/carbon-based and magnetic materials have been selected to arrest copper ions through a widespread range of anchoring and embedding
  • is to consider the recently published developments (2014–2019) in the synthesis and catalytic applications of copper supported by silica nanocomposites, carbon nanocomposites, and magnetic nanocomposites for expanding the “click” chemistry. Keywords: “click” reaction; copper complexes; reusable
  • definition and fails as a real “click” reaction. Although this cyclization reaction requires elevated temperatures and often yields both the 1,4- and 1,5-regioisomers, the Cu or Ru alkyne–azide cycloaddition falls exactly into the above definition [11]. In this respect, the copper-catalyzed cycloaddition
PDF
Album
Review
Published 01 Apr 2020

Copper-catalyzed enantioselective conjugate reduction of α,β-unsaturated esters with chiral phenol–carbene ligands

  • Shohei Mimura,
  • Sho Mizushima,
  • Yohei Shimizu and
  • Masaya Sawamura

Beilstein J. Org. Chem. 2020, 16, 537–543, doi:10.3762/bjoc.16.50

Graphical Abstract
  • , Sapporo, Hokkaido 001-0021, Japan 10.3762/bjoc.16.50 Abstract A chiral phenol–NHC ligand enabled the copper-catalyzed enantioselective conjugate reduction of α,β-unsaturated esters. The phenol moiety of the chiral NHC ligand played a critical role in producing the enantiomerically enriched products. The
  • catalyst worked well for various (Z)-isomer substrates. Opposite enantiomers were obtained from (Z)- and (E)-isomers, with a higher enantiomeric excess from the (Z)-isomer. Keywords: catalyst; chiral NHC; conjugate reduction; copper catalysis; enantioselective reaction; Introduction Since the leading
  • work of Stryker and co-workers on triphenylphosphine-stabilized copper hydride complexes [1][2], copper hydrides have been widely used for conjugate reductions of α,β-unsaturated carbonyl compounds [3]. Especially a chiral copper catalyst combined with a stoichiometric amount of a silane reagent, which
PDF
Album
Supp Info
Full Research Paper
Published 31 Mar 2020

Copper-catalyzed remote C–H arylation of polycyclic aromatic hydrocarbons (PAHs)

  • Anping Luo,
  • Min Zhang,
  • Zhangyi Fu,
  • Jingbo Lan,
  • Di Wu and
  • Jingsong You

Beilstein J. Org. Chem. 2020, 16, 530–536, doi:10.3762/bjoc.16.49

Graphical Abstract
  • substituted polycyclic aromatic hydrocarbons (PAHs) is a desired but challenging task. A copper-catalyzed C7–H arylation of 1-naphthamides has been developed by using aryliodonium salts as arylating reagents. This protocol does not need to use precious metal catalysts and tolerates wide variety of functional
  • arylation; nonprecious metal catalyst; copper catalysis; polycyclic aromatic hydrocarbons (PAHs); regioselectivity; Introduction Polycyclic aromatic hydrocarbons (PAHs) with rigid planar structure, such as naphthalene, phenanthrene, pyrene and their derivatives, can usually emit relatively strong
  • of our ongoing research on direct C–H bond functionalization [20][27][28][29], we herein represent a copper-catalyzed remote C–H arylation of PAHs with aryliodonium salts as arylating reagents (Scheme 1). This protocol is compatible with different PAH substrates including 1-naphthamides, phenanthrene
PDF
Album
Supp Info
Full Research Paper
Published 30 Mar 2020

Controlling alkyne reactivity by means of a copper-catalyzed radical reaction system for the synthesis of functionalized quaternary carbons

  • Goki Hirata,
  • Yu Yamane,
  • Naoya Tsubaki,
  • Reina Hara and
  • Takashi Nishikata

Beilstein J. Org. Chem. 2020, 16, 502–508, doi:10.3762/bjoc.16.45

Graphical Abstract
  • reaction of 3 equivalents of terminal alkyne 1 (aryl substituted alkyne) and an α-bromocarbonyl compound 2 (tertiary alkyl radical precursor) undergoes tandem alkyl radical addition/Sonogashira coupling to produce 1,3-enyne compound 3 possessing a quaternary carbon in the presence of a copper catalyst
  • . Moreover, the reaction of α-bromocarbonyl compound 2 and an alkyne 4 possessing a carboxamide moiety undergoes tandem alkyl radical addition/C–H coupling to produce indolinone derivative 5. Keywords: copper catalyst; 1,3-enyne; functionalized quaternary carbon; indolinone; tandem alkyl radical addition
  • ][14][15][16]. Recently, we have prepared quaternary carbon centers via radical reactions by using α-bromocarbonyl compounds (a tertiary alkyl source) and olefins or heteroatoms in the presence of a copper catalyst [17][18][19]. During our studies, we found that combinations of alkynes and tertiary
PDF
Album
Supp Info
Letter
Published 26 Mar 2020

KOt-Bu-promoted selective ring-opening N-alkylation of 2-oxazolines to access 2-aminoethyl acetates and N-substituted thiazolidinones

  • Qiao Lin,
  • Shiling Zhang and
  • Bin Li

Beilstein J. Org. Chem. 2020, 16, 492–501, doi:10.3762/bjoc.16.44

Graphical Abstract
  • in CH3CN at 100 °C for 16 h, and a full conversion to the 2-aminoethyl acetate product 3a was obtained (Table 1, entry 1). By changing the copper salt to CuBr or CuI, similar results were detected under the same conditions (Table 1, entries 2 and 3). Surprisingly, when this reaction was performed
  • without copper salts and decreasing the temperature to 50 °C in CH3CN, still a 99% GC yield of the desired product 3a was obtained (Table 1, entries 4 and 5). These results revealed that the copper salt is not necessary for this ring-opening N-alkylation reaction to take place. Next we evaluated several
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2020
Other Beilstein-Institut Open Science Activities