Search results

Search for "halide" in Full Text gives 331 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • -substituents including methoxy and halide groups; however, O-acetyl ketoximes with ortho- or meta-substituents failed to react. A small number of substituted [2.2.1]diazabicyclic alkenes 130a were successfully employed, albeit with slightly lower yields. In the reaction with N-methoxybenzamides 161, the same
PDF
Album
Review
Published 24 Apr 2023

Combretastatins D series and analogues: from isolation, synthetic challenges and biological activities

  • Jorge de Lima Neto and
  • Paulo Henrique Menezes

Beilstein J. Org. Chem. 2023, 19, 399–427, doi:10.3762/bjoc.19.31

Graphical Abstract
  • ] between halide 37 and phenol 38 leading to the formation of diaryl ether 39, which was subjected to a regioselective iodination reaction to give compound 40. Conversion of the nitrile in compound 40 into the corresponding aldehyde 41 followed by Z-selective Still–Gennari olefination gave the cis α,β
  • order to obtain higher yields in the intramolecular cyclization step, the authors also investigated the use of a strategy based on an SNAr reaction using an electron-deficient aryl halide. Thus, 4-fluoro-3-nitrobenzaldehyde (118) was subjected to the Still–Gennari reaction, to give the corresponding cis
PDF
Album
Review
Published 29 Mar 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
  • additional functionalization steps the key intermediate 128. This compound constituted the substrate for the Pd-promoted intramolecular cyclization. In this case, an enol triflate was used instead of an alkenyl halide which required the presence of an electron-rich phosphine, a lower temperature (50 °C
  • of an alkyl halide to a carbonyl group, implementation of the Barbier-type ring closure relied thus on the preliminary introduction of both aldehyde and alkyl halide functional groups on a suitable substrate. The mechanism was first thought to involve the coupling of an alkyl radical and a ketyl
PDF
Album
Review
Published 03 Mar 2023

Total synthesis of insect sex pheromones: recent improvements based on iron-mediated cross-coupling chemistry

  • Eric Gayon,
  • Guillaume Lefèvre,
  • Olivier Guerret,
  • Adrien Tintar and
  • Pablo Chourreu

Beilstein J. Org. Chem. 2023, 19, 158–166, doi:10.3762/bjoc.19.15

Graphical Abstract
  • aimed at combining the advantages brought by those additives with the atom-economy offered by the use of organic electrophiles bearing halide leaving groups (better than that obtained with phosphates leaving groups, Scheme 4). We thus investigated the development of pheromone synthesis involving cross
PDF
Album
Perspective
Published 14 Feb 2023

1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures

  • Bram Ryckaert,
  • Ellen Demeyere,
  • Frederick Degroote,
  • Hilde Janssens and
  • Johan M. Winne

Beilstein J. Org. Chem. 2023, 19, 115–132, doi:10.3762/bjoc.19.12

Graphical Abstract
  • -haloalkylsulfide via a cyclic sulfonium intermediate, which then ring opens and eliminates the halide to give the unsaturated 1,4-dithiane ring. We have found this Parham ring expansion to be the most practical preparatory procedure for 2 on large scale [30]. Thus, a simple condensation of ethane-1,2-dithiol (10
PDF
Album
Review
Published 02 Feb 2023

Synthetic study toward tridachiapyrone B

  • Morgan Cormier,
  • Florian Hernvann and
  • Michaël De Paolis

Beilstein J. Org. Chem. 2022, 18, 1741–1748, doi:10.3762/bjoc.18.183

Graphical Abstract
  • screening of various organocopper reagents (prepared from MeLi, EtMgBr, ZnEt2 or AlMe3 and copper halide or thiophene-2-carboxylate (CuTC)) was conducted, to no avail. In most cases, the starting material was recovered without indication that the pyrone ring interacted instead with the reagent. To decrease
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2022

Total synthesis of grayanane natural products

  • Nicolas Fay,
  • Rémi Blieck,
  • Cyrille Kouklovsky and
  • Aurélien de la Torre

Beilstein J. Org. Chem. 2022, 18, 1707–1719, doi:10.3762/bjoc.18.181

Graphical Abstract
  • diastereoselectivity in 58% on a 3 g scale. Subsequently, vinyl halide 48 was converted to diene 50 by Suzuki coupling with potassium vinyltrifluoroborate (49) in 90% yield (Scheme 8). The C7–C8 bond formation from a bridgehead carbocation was a real challenge to close the 7-membered ring. To achieve this, the
PDF
Album
Review
Published 12 Dec 2022

Functionalization of imidazole N-oxide: a recent discovery in organic transformations

  • Koustav Singha,
  • Imran Habib and
  • Mossaraf Hossain

Beilstein J. Org. Chem. 2022, 18, 1575–1588, doi:10.3762/bjoc.18.168

Graphical Abstract
  • successfully obtained from the reaction medium (Scheme 4). The proposed mechanism proceeded via cine-substitution. The rate-determining step was found to be the nucleophilic attack of the halide ion at the C-2 position of the O-tosylated imidazole 1-oxide. In spite of the difference in rate for the cases of
  • chloride and bromide where bromination occurred at higher rate, N-tosylpyridinium halide was the acylating agent in both cases. In 2017, M. Hossain and co-workers suggested a quite unique one-pot deoxygenative chlorination reaction procedure of 2-unsubstituted imidazole N-oxides using oxalyl chloride as
PDF
Album
Review
Published 22 Nov 2022

An alternative C–P cross-coupling route for the synthesis of novel V-shaped aryldiphosphonic acids

  • Stephen J. I. Shearan,
  • Enrico Andreoli and
  • Marco Taddei

Beilstein J. Org. Chem. 2022, 18, 1518–1523, doi:10.3762/bjoc.18.160

Graphical Abstract
  • between a primary alkyl halide and a trialkyl phosphite, first reported in the late 1890s, the general scheme for which can be seen in Supporting Information File 1, Scheme S1 [22]. It should be noted that this reaction is not suitable for use with aryl halide substrates due to the poor reactivity between
  • -coupling reaction is carried out by placing the aryl halide and the precatalyst into a round-bottomed flask in the presence of a suitable solvent, such as 1,3-diisopropylbenzene or mesitylene, and setting to reflux. The advantage of using such solvents lies in their high boiling point (203 °C and 164 °C
  • investigation would be required in order to confirm this. The choice of the phosphite is also important, partially due to the boiling point and the potential for running reactions at higher temperatures, and also the formation of an alkyl halide byproduct. It is the reactivity of this byproduct that determines
PDF
Album
Supp Info
Letter
Published 07 Nov 2022

Enantioselective total synthesis of putative dihydrorosefuran, a monoterpene with an unique 2,5-dihydrofuran structure

  • Irene Torres-García,
  • Josefa L. López-Martínez,
  • Rocío López-Domene,
  • Manuel Muñoz-Dorado,
  • Ignacio Rodríguez-García and
  • Miriam Álvarez-Corral

Beilstein J. Org. Chem. 2022, 18, 1264–1269, doi:10.3762/bjoc.18.132

Graphical Abstract
  • of the hydroxy group to the terminal double bond of the allene in compound 3. Another key step is the Ti(III)-mediated straightforward synthesis of this α-hydroxyallene, which could be achieved through a regioselective Barbier-type coupling of a propargylic halide (1-bromo-2-butyne) with the aldehyde
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2022

A one-pot electrochemical synthesis of 2-aminothiazoles from active methylene ketones and thioureas mediated by NH4I

  • Shang-Feng Yang,
  • Pei Li,
  • Zi-Lin Fang,
  • Sen Liang,
  • Hong-Yu Tian,
  • Bao-Guo Sun,
  • Kun Xu and
  • Cheng-Chu Zeng

Beilstein J. Org. Chem. 2022, 18, 1249–1255, doi:10.3762/bjoc.18.130

Graphical Abstract
  • , the in situ generated α-iodoketone was proposed to be the key active species. Keywords: 2-aminothiazoles; electrosynthesis; indirect electrolysis; halide ion; Introduction Thiazoles are prevalent structural motifs in a wide range of natural products [1] and synthetic molecules possessing various
  • . Organic electrosynthesis has been recognized as a green, modern, and safe technique, since electrons can be used as an alternative for oxidants or reductants [30][31][32][33][34][35][36][37][38]. During our continuous interests in halide-mediated indirect electrolysis [39][40][41][42], we have achieved
  • demonstrate the feasibility of our idea, ethyl acetoacetate (1a) and thiourea (2a) were chosen as model substrates for the optimization of reaction conditions. Based on our previous studies on the halide-mediated α-C–H functionalization of carbonyl compounds [32][33][34][35], graphite was chosen as the
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2022

Cathodic generation of reactive (phenylthio)difluoromethyl species and its reactions: mechanistic aspects and synthetic applications

  • Sadanobu Iwase,
  • Shinsuke Inagi and
  • Toshio Fuchigami

Beilstein J. Org. Chem. 2022, 18, 872–880, doi:10.3762/bjoc.18.88

Graphical Abstract
  • CH2Cl2 using 20 equiv of α-methylstyrene. However, the yield of 4 did not increase. The cathodic reduction of perfluoroalkyl halide generates radical and/or anionic species in general [24]. In order to generate radical species selectively, indirect cathodic reduction using various mediators has been
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2022

Synthesis of sulfur karrikin bioisosteres as potential neuroprotectives

  • Martin Pošta,
  • Václav Zima,
  • Lenka Poštová Slavětínská,
  • Marika Matoušová and
  • Petr Beier

Beilstein J. Org. Chem. 2022, 18, 549–554, doi:10.3762/bjoc.18.57

Graphical Abstract
  • (LiHMDS), followed by the addition of an alkyl halide. Application of this method to 8 provided the target molecule 21 in good yield (Scheme 4). It has to be mentioned that the metalation proceeds exclusively at C7, and thus cannot be used for the preparation of 20 via alkylation at C5. Our attempt to
PDF
Album
Supp Info
Full Research Paper
Published 16 May 2022

Site-selective reactions mediated by molecular containers

  • Rui Wang and
  • Yang Yu

Beilstein J. Org. Chem. 2022, 18, 309–324, doi:10.3762/bjoc.18.35

Graphical Abstract
  • monoreduced to the corresponding alkyl halide 21 as major product, together with minor alkane product that arose from the reaction outside the cavitand (Figure 6b). Experiments also indicated that the binding of the guests with the hosts must show high affinities (KA > 1.2 × 103 M−1) to make sure the
PDF
Album
Review
Published 14 Mar 2022

Recent developments and trends in the iron- and cobalt-catalyzed Sonogashira reactions

  • Surendran Amrutha,
  • Sankaran Radhika and
  • Gopinathan Anilkumar

Beilstein J. Org. Chem. 2022, 18, 262–285, doi:10.3762/bjoc.18.31

Graphical Abstract
  • reaction between an aryl/vinyl halide (Cl, Br, I, OTf) and a terminal alkyne in the presence of a Cu(I) co-catalyst under basic conditions to form a Csp2–Csp bond generating an arylalkyne is known as the Sonogashira (Sonogashira–Hagihara) coupling [1] and has become an important C–C bond-forming reaction
  • cross-coupling reactions Homogeneous green protocols Tsai et al. discussed an efficient, simple and environmentally friendly method for the coupling of arylynols 3 with an aryl halide [21]. This strategy discloses a one pot reaction catalyzed by FeCl3 in an aqueous medium associated with the cationic
  • iodides showed good to excellent yields when coupled with phenylacetylene. The proposed mechanism is similar to the standard palladium-catalyzed Sonogashira reaction with the steps involving oxidative addition of the aryl/vinyl halide followed by transmetallation, and reductive elimination. The mechanism
PDF
Album
Review
Published 03 Mar 2022

New advances in asymmetric organocatalysis

  • Radovan Šebesta

Beilstein J. Org. Chem. 2022, 18, 240–242, doi:10.3762/bjoc.18.28

Graphical Abstract
  • by a review article devoted to aza-Michael reactions of amines and amides [17]. The evolution of the understanding of noncovalent activation modes led to the realization that anion-binding is a critical feature in many transformations. Halide anions are highly relevant and widely occurring within
PDF
Editorial
Published 28 Feb 2022

Asymmetric organocatalytic Michael addition of cyclopentane-1,2-dione to alkylidene oxindole

  • Estelle Silm,
  • Ivar Järving and
  • Tõnis Kanger

Beilstein J. Org. Chem. 2022, 18, 167–173, doi:10.3762/bjoc.18.18

Graphical Abstract
  • substituted oxindoles with an E-configuration of the double bond. The results are presented in Scheme 2. Both electron-withdrawing (Scheme 2, 3f–h) and electron-donating groups (Scheme 2, 3m,n) at the phenyl ring of the benzylidene moiety were tolerated. The position of the halide at the aromatic ring did not
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2022

Ready access to 7,8-dihydroindolo[2,3-d][1]benzazepine-6(5H)-one scaffold and analogues via early-stage Fischer ring-closure reaction

  • Irina Kuznetcova,
  • Felix Bacher,
  • Daniel Vegh,
  • Hsiang-Yu Chuang and
  • Vladimir B. Arion

Beilstein J. Org. Chem. 2022, 18, 143–151, doi:10.3762/bjoc.18.15

Graphical Abstract
  • From a retrosynthetic point of view, we followed three main pathways, in order to accomplish the synthesis of scaffold C. The first retrosynthetic route (a) started with an alkyl halide precursor, which was expected to afford scaffold C after ring-closure reaction at position 2 of the indole ring [23
  • to accomplish organotin-mediated cyclization [23] of 9 led to a complex mixture of compounds, in which we have not identified the desired product. Therefore, we did not further pursue this route. Attempts to perform cyclization via intramolecular alkyl halide Heck reaction [26] also failed. This is
  • most likely a result of the relatively high lability of the CH2 protons in the alkyl halide moiety of the starting molecule, which might lead to enolization instead of oxidative addition of palladium under strongly basic conditions needed in this type of reaction. Thus, we came to the conclusion that
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2022

Mechanistic studies of the solvolysis of alkanesulfonyl and arenesulfonyl halides

  • Malcolm J. D’Souza and
  • Dennis N. Kevill

Beilstein J. Org. Chem. 2022, 18, 120–132, doi:10.3762/bjoc.18.13

Graphical Abstract
  • at least four orders of magnitude slower than the chloride as regards the solvolytic replacement of the halogen present in the benzenesulfonyl halide. For the reactions of the fluoride in 20% dioxane at 91 °C, the m-nitro derivative was shown to be subject to a strong nucleophilic catalysis by
PDF
Album
Review
Published 17 Jan 2022

Iron-catalyzed domino coupling reactions of π-systems

  • Austin Pounder and
  • William Tam

Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196

Graphical Abstract
  • iron-catalyzed cross-coupling reactions of alkyl halides began in 2004 when Nakamura first reported the TMEDA-mediated Fe-catalyzed cross-coupling reaction between secondary bromides with aryl Grignard reagents [52]. Since then, several reports of alkyl halide cross-coupling reactions have been
  • reported [53]. In 2015, Kang and co-workers described a FeCl2-catalyzed tandem cyclization/cross-coupling reaction of alkyl iodides 1 with aryl Grignard reagents 2 to give arylmethyl-substituted pyrrolidines and tetrahydrofurans 3 in poor to excellent yield (Scheme 3) [54]. The concept of alkyl halide
  • ]. The group expanded the reaction to include 1,6-dienes 24 leading to 25 via the formation of three C–C bonds through a radical cyclization/arylation cascade, like that reported by Kang et al. (Scheme 3). The authors hypothesized the alkyl halide could react with aryl iron species 27 to form the alkyl
PDF
Album
Review
Published 07 Dec 2021

Synthesis of a novel aminobenzene-containing hemicucurbituril and its fluorescence spectral properties with ions

  • Qingkai Zeng,
  • Qiumeng Long,
  • Jihong Lu,
  • Li Wang,
  • Yuting You,
  • Xiaoting Yuan,
  • Qianjun Zhang,
  • Qingmei Ge,
  • Hang Cong and
  • Mao Liu

Beilstein J. Org. Chem. 2021, 17, 2840–2847, doi:10.3762/bjoc.17.195

Graphical Abstract
  • important role in the cyclization, some additives were examined in combination with NaH as the base for improving the yield (Table 1, entries 6–9). For the synthesis of hemicucurbituril derivatives in a previous study, halide ions usually facilitated the cyclization [27]. However, halide ions had no effect
  • on the current process (Table 1, entries 6–8). This observation could infer that the nitrobenzene-containing hemicucurbituril 9 shows no obvious affinity to halide ions such as chloride and bromide. When NaClO4 was introduced as the additive, the yield was moderately improved to 30.0% (Table 1, entry
  • halide ions, especially the heavier iodide ion, to the macrocyclic sensor, slightly enhanced the fluorescence emission in CH2Cl2/CH3OH 4:1 (v/v) at 298 K, instead of quenching the fluorescence as predicted by the classic heavy-atom effect. The corresponding fluorescence enhancement efficiency of selected
PDF
Album
Supp Info
Letter
Published 06 Dec 2021

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • complexes to photocatalysis are reported. Copper-photocatalyzed reactions, including alkene and alkyne functionalization, organic halide functionalization, and alkyl C–H functionalization that have been reported over the past 5 years, are included. Keywords: copper-photocatalyzed reactions; green chemistry
  • bonds and can be applied to radical chemistry. This review discusses copper-catalyzed reactions including alkene and alkyne, organic halide, and alkyl C–H functionalization. 3. Visible-light-mediated copper-catalyzed alkene and alkyne functionalization 3.1 Olefinic C–H functionalization and allylic
  • absence of organic halide, the copper salts catalyzed the hydroamination of the alkene [59]. Mechanistic studies showed that the copper–amido complex coordinated with alkenes, which then acted as a primary photocatalyst. After light irradiation, the excited alkene–copper–amido species offered a benzyl
PDF
Album
Review
Published 12 Oct 2021

Advances in mercury(II)-salt-mediated cyclization reactions of unsaturated bonds

  • Sumana Mandal,
  • Raju D. Chaudhari and
  • Goutam Biswas

Beilstein J. Org. Chem. 2021, 17, 2348–2376, doi:10.3762/bjoc.17.153

Graphical Abstract
  • halide complex compound 3 (Scheme 1). Review Cyclization reactions involving stoichiometric amounts of Hg(II) salts Cyclization involving alkenes (>C=C<) In 1900 and 1901, the Sand and Biilmann group had first reported the Hg(II)-mediated cyclization of allyl alcohol using Hg(II) nitrate (Hg(NO3)2) in
  • selectivity of α-stereochemistry was primarily due to the strong directing effect of the neighboring benzyl ether group with the Hg(OAc)2. When cyclic mercuric halide 8 was treated with NaBH4 and oxygen (O2) in DMF oxidative demercuration takes place to give alcohol 10 in quantitative yield (Scheme 4). The
PDF
Album
Review
Published 09 Sep 2021

A novel methodology for the efficient synthesis of 3-monohalooxindoles by acidolysis of 3-phosphate-substituted oxindoles with haloid acids

  • Li Liu,
  • Yue Li,
  • Tiao Huang,
  • Dulin Kong and
  • Mingshu Wu

Beilstein J. Org. Chem. 2021, 17, 2321–2328, doi:10.3762/bjoc.17.150

Graphical Abstract
  • recently as precursors in Friedel–Crafts reactions of arenes [30][31] and cross-coupling reactions of arylboronic reagents [32]. However, the direct SN1 reaction of such isatin-derived 3-phosphate-substituted oxindoles by halide ions as nucleophiles has not been developed yet and remains an unsolved
  • -3-yl) phosphate 2 is activated by protonation with a haloid acid. Subsequently the phosphate leaving group is eliminated to generate the carbocation intermediate III, which is then followed by rapid combination with a nucleophilic halide ion to form a 3-monohalooxindoles 3 or 4. Conclusion In
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2021

Halides as versatile anions in asymmetric anion-binding organocatalysis

  • Lukas Schifferer,
  • Martin Stinglhamer,
  • Kirandeep Kaur and
  • Olga García Macheño

Beilstein J. Org. Chem. 2021, 17, 2270–2286, doi:10.3762/bjoc.17.145

Graphical Abstract
  • Lukas Schifferer Martin Stinglhamer Kirandeep Kaur Olga Garcia Macheno Organic Chemistry Institute, Westfälische-Wilhelms University Münster, Correnstraße 36, 48149 Münster, Germany 10.3762/bjoc.17.145 Abstract This review intends to provide an overview on the role of halide anions in the
  • a field. Thus, the use of the halide in the catalyst–anion complex as both a mere counter-anion spectator or an active nucleophile has been depicted, along with the new trends toward additional noncovalent contacts within the HB-donor catalyst and supramolecular interactions to both the anion and
  • the cationic reactive species. Keywords: anion binding; asymmetric catalysis; halide anions; hydrogen donors; noncovalent interactions; Introduction Halogens and the respective anionic halides occupy an essential role in natural and chemical processes [1][2][3][4]. While in chemical syntheses
PDF
Album
Review
Published 01 Sep 2021
Other Beilstein-Institut Open Science Activities