Search results

Search for "thioglycoside" in Full Text gives 56 result(s) in Beilstein Journal of Organic Chemistry.

Urea–hydrogen peroxide prompted the selective and controlled oxidation of thioglycosides into sulfoxides and sulfones

  • Adesh Kumar Singh,
  • Varsha Tiwari,
  • Kunj Bihari Mishra,
  • Surabhi Gupta and
  • Jeyakumar Kandasamy

Beilstein J. Org. Chem. 2017, 13, 1139–1144, doi:10.3762/bjoc.13.113

Graphical Abstract
  • controlled oxidation of thioglycosides to glycosyl sulfoxides and sulfones selectively by altering the reaction conditions. It is also observed that thioglycoside oxidation suffers from low yields, poor selectivity (i.e., sulfoxide vs sulfone), use of inconvenient reaction conditions and expensive oxidants
  • deficient thioglucopyranosides, we further investigated the oxidation of O-benzyl protected 4-methylphenyl thioglycoside 13 under optimized conditions (Table 2, entry 13). This substrate was found to be more reactive than O-acetylated and benzoylated thioglycosides and gave the sulfoxide in a good yield
  • .) [34]. Therefore, the scope of this methodology was further investigated with oxidation of allyl group protected thioglycoside 14 (Table 2, entry 14). Remarkably, allyl groups were found to be very stable during the oxidation while sulfide underwent selective oxidation to corresponding sulfoxide and
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2017

Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block

  • Yuta Isoda,
  • Norihiko Sasaki,
  • Kei Kitamura,
  • Shuji Takahashi,
  • Sujit Manmode,
  • Naoko Takeda-Okuda,
  • Jun-ichi Tamura,
  • Toshiki Nokami and
  • Toshiyuki Itoh

Beilstein J. Org. Chem. 2017, 13, 919–924, doi:10.3762/bjoc.13.93

Graphical Abstract
  • β-glycosyl triflate intermediates 3 might determine the observed selectivity (Figure 2). We previously established that glycosyl triflate 3a was derived from thioglycoside 2a by an NMR study under low-temperature conditions, in which the glycosyl triflate α-isomer 3aα was confirmed as an exclusive
  • an equilibrium between the α-isomer and the β-isomer of 3a. To the contrary, glycosyl triflate 3b, derived from thioglycoside 2b, might be more reactive and affords the β-product 5bβ before isomerization from the α-isomer 3bα to the β-isomer 3bβ. In this case, glycosylation via 3bα becomes the major
  • potential precursor 7 of TMG-chitotriomycin (1) using disaccharide 5bβ as a building block as illustrated in Figure 3. The automated electrochemical assembly of building blocks was initiated by the anodic oxidation of 5bβ and the subsequent coupling with thioglycoside 4 afforded the corresponding
PDF
Album
Supp Info
Full Research Paper
Published 16 May 2017

Total synthesis of a Streptococcus pneumoniae serotype 12F CPS repeating unit hexasaccharide

  • Peter H. Seeberger,
  • Claney L. Pereira and
  • Subramanian Govindan

Beilstein J. Org. Chem. 2017, 13, 164–173, doi:10.3762/bjoc.13.19

Graphical Abstract
  • , which was to be carried forward into the C2 inversion step. Conversion of 13 to the corresponding C2 triflate upon treatment with triflic anhydride in pyridine was not successful. Even model thioglycoside 10 failed to react to the corresponding glycosyl triflate under similar conditions (Scheme 2). The
  • problems associated with the lengthy and low yielding synthetic sequence prompted us to explore a different approach to obtain the key mannosazide building block (Scheme 3). Partially protected mannosazide thioglycoside 16 was prepared in seven steps from α-O-methylglucose following a published procedure
  • [25]. Silylation of the C3 hydroxy group furnished thioglycoside 17. Glycosylation of the C5 linker by activation of 17 using NIS/TfOH as the promoter at −20 °C produced mainly β-mannoside 15 (4:1 β:α) [26]. The identity of the β-isomer was confirmed by NMR analysis (1JCH β = 159.0 Hz, see Supporting
PDF
Album
Supp Info
Full Research Paper
Published 25 Jan 2017

Silyl-protective groups influencing the reactivity and selectivity in glycosylations

  • Mikael Bols and
  • Christian Marcus Pedersen

Beilstein J. Org. Chem. 2017, 13, 93–105, doi:10.3762/bjoc.13.12

Graphical Abstract
  • the galactose derivative 2 (Scheme 1). The reaction gave a 56% yield of 3 as a 1:1 mixture of α- and β-glucosides. Migration of a TBS group to the acceptor alcohol 2 was observed as a byproduct (10%). Attempts of glycosylating 2 with the thioglycoside or the corresponding glycosyl halides were
  • been applied to prepare partially acylated cholestan glycosides. In this case an imidate with a 2-O-acetate and 3,4-O-TES protection was used, which ensured stereoselectivity by neighboring-group participation [11]. For similar reasons the per-TES-protected thioglycoside 7 was employed to prepare the
  • acetyl and benzoyl are among the most electron-withdrawing of the common protective groups, whereas benzyl (or methyl) groups are less so, which is reflected in the reactivity of glycosyl donors carrying these groups. As shown in Figure 2, the thioglycoside with benzyl ethers 13 is about 40 times more
PDF
Album
Review
Published 16 Jan 2017

Mycothiol synthesis by an anomerization reaction through endocyclic cleavage

  • Shino Manabe and
  • Yukishige Ito

Beilstein J. Org. Chem. 2016, 12, 328–333, doi:10.3762/bjoc.12.35

Graphical Abstract
  • phthalimide group in the 2-position, was converted to α-glycoside 4, by introducing an N-acetyl 2,3-trans-carbamate group (Scheme 3) and by conducting an anomerization reaction. The glycosylation reaction of phthalimido-protected glucosamine thioglycoside 5 with inositol 6 [24] afforded β-linked pseudo
PDF
Album
Supp Info
Letter
Published 22 Feb 2016

Synthesis of D-fructose-derived spirocyclic 2-substituted-2-oxazoline ribosides

  • Madhuri Vangala and
  • Ganesh P. Shinde

Beilstein J. Org. Chem. 2015, 11, 2289–2296, doi:10.3762/bjoc.11.249

Graphical Abstract
  • were eventually found to be unstable. Later in 2004, García Fernández and co-workers elegantly showed the formation of fused and spiroglycooxazolines from D-fructose [37]. More recently, Mong and co-workers synthesized fused glucopyranose oxazolines in nitrile solvents from thioglycoside donors and
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2015

Automated solid-phase synthesis of oligosaccharides containing sialic acids

  • Chian-Hui Lai,
  • Heung Sik Hahm,
  • Chien-Fu Liang and
  • Peter H. Seeberger

Beilstein J. Org. Chem. 2015, 11, 617–621, doi:10.3762/bjoc.11.69

Graphical Abstract
  • these considerations sialyl phosphate building blocks 4 and 5 [14] were selected for automated glycan assembly using monosaccharides (Scheme 1). The synthesis of building block 4 commenced with the placement of a C-9 Fmoc protecting group on thioglycoside 1 [14] to produce 2. Installation of O
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2015

Synthesis of a hexasaccharide partial sequence of hyaluronan for click chemistry and more

  • Marina Bantzi,
  • Stephan Rigol and
  • Athanassios Giannis

Beilstein J. Org. Chem. 2015, 11, 604–607, doi:10.3762/bjoc.11.67

Graphical Abstract
  • TBS group at O-4''' in 59% yield [22]. The excess amount of pyridine is necessary in order to avoid cleavage of the benzylidene acetals. Following the same concept, fully protected hexasaccharide 7 was synthesized. Therefore, thioglycoside 4 was activated with NIS and TfOH and subsequently combined
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2015

Synthesis of the pentasaccharide repeating unit of the O-antigen of E. coli O117:K98:H4

  • Pintu Kumar Mandal

Beilstein J. Org. Chem. 2014, 10, 2724–2728, doi:10.3762/bjoc.10.287

Graphical Abstract
  • following the reaction pathway depicted in Scheme 2. Glycosylation of 3-azidopropyl 2,3,6-tri-O-benzyl-β-D-galactopyranoside (2) with the thioglycoside donor 3 in the presence of N-iodosuccinimide (NIS) and trimethylsilyl trifluoromethanesulfonate (TMSOTf) [26][27] gave disaccharide derivative 8 in 72
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2014

Galactan synthesis in a single step via oligomerization of monosaccharides

  • Marius Dräger and
  • Amit Basu

Beilstein J. Org. Chem. 2014, 10, 2658–2663, doi:10.3762/bjoc.10.279

Graphical Abstract
  • earlier attempt at the oligomerization of a 6-hydroxyglucosamine thioglycoside donor in the presence of an initiating primary alcohol resulted in a single glycosylation of the initiating alcohol to provide a glycoside product, and trace amounts of further oligomerization were detected in some cases [15
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2014

Efficient routes toward the synthesis of the D-rhamno-trisaccharide related to the A-band polysaccharide of Pseudomonas aeruginosa

  • Aritra Chaudhury,
  • Sajal K. Maity and
  • Rina Ghosh

Beilstein J. Org. Chem. 2014, 10, 1488–1494, doi:10.3762/bjoc.10.153

Graphical Abstract
  • -rhamno-trisaccharide. The application of the reported regioselective radical-mediated deoxygenation on 4,6-O-benzylidene D-manno thioglycoside (hitherto unexplored) has potential for ramification in the field of synthesis of oligosaccharides based on 6-deoxy hexoses. Keywords: A-band polysaccharide; D
  • -rhamno-trisaccharide; deoxygenation on thioglycoside; multivalent glycosystems; one-pot sequential glycosylation; Pseudomonas aeruginosa; Introduction With the firm establishment of the critical roles played by oligosaccharides in diverse biological processes [1][2][3][4], the field of oligosaccharide
  • by the selective cleavage of the same with 80% aq AcOH. Compound 3a which is the phenyl thioglycoside analogue of 4 was also accessed similarly. Both the compounds were next converted to their rhamnoside counterparts 6 and 7 [44], respectively by treatment with di-tert-butyl peroxide (DTBP) and
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2014

Convergent synthesis of a tetrasaccharide repeating unit of the O-specific polysaccharide from the cell wall lipopolysaccharide of Azospirillum brasilense strain Sp7

  • Pintu Kumar Mandal,
  • Debashis Dhara and
  • Anup Kumar Misra

Beilstein J. Org. Chem. 2014, 10, 293–299, doi:10.3762/bjoc.10.26

Graphical Abstract
  • (e.g. a protein, a lipid or another aglycone) for biochemical applications. A stereoselective [2 + 2] block glycosylation of the disaccharide derivative 8 with the disaccharide thioglycoside 9 led to the formation of tetrasaccharide 10, which was finally deprotected to give the desired tetrasaccharide
  • in 77% yield. The formation of compound 8 was confirmed by NMR analysis (signals at δ 4.80 (br s, H-1B), 4.44 (d, J = 8.0 Hz, H-1A) and at δ 101.0 (C-1A), 99.4 (C-1B) in the 1H and 13C NMR spectra respectively) (Scheme 2). The 1,2-cis-glycosylation of thioglycoside 4 with thioglycoside 5 in the
  • presence of a combination of NIS–TfOH [39][40] in the mixed solvent CH2Cl2/Et2O 1:1 furnished disaccharide thioglycoside derivative 9 in 75% yield. A minor quantity (~8%) of the 1,2-trans-glycosylated product was also formed under the reaction conditions but could be removed by column chromatography. The
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2014

Synthesis of homo- and heteromultivalent carbohydrate-functionalized oligo(amidoamines) using novel glyco-building blocks

  • Felix Wojcik,
  • Sinaida Lel,
  • Alexander G. O’Brien,
  • Peter H. Seeberger and
  • Laura Hartmann

Beilstein J. Org. Chem. 2013, 9, 2395–2403, doi:10.3762/bjoc.9.276

Graphical Abstract
  • reaction of several thioglycosides and the double bond presenting diethylenetriamine succinic acid building block (DDS) 1, giving access to a small alphabet of carbohydrate-functionalized building blocks. TEC in flow enabled determining the reactivity of each thioglycoside at >275 nm, leading to optimized
  • conditions. Integration of the HPLC UV-signals at 254 nm was used to establish residence time versus conversion plots (Figure 2). The plots showed close to complete conversion within 30 min residence time and 1.5 equiv of thioglycoside β-Glc(OAc)4-SH 2 (95%) or β-Gal(OAc)4-SH 3 (94%) (Figure 2; Glc and Gal
  • established conditions (30 min; 1.5 equiv thioglycoside; 0.1 M). Although the reactivity of aminoglycosides 5 and 6 is in the same range as that of glycosides 2–4, we chose a higher excess of thiol component (2 equiv) for the production of glycosylated building blocks 11 and 12, resulting in >95% conversion
PDF
Album
Supp Info
Video
Full Research Paper
Published 07 Nov 2013

Synthesis of mucin-type O-glycan probes as aminopropyl glycosides

  • David Benito-Alifonso,
  • Rachel A. Jones,
  • Anh-Tuan Tran,
  • Hannah Woodward,
  • Nichola Smith and
  • M. Carmen Galan

Beilstein J. Org. Chem. 2013, 9, 1867–1872, doi:10.3762/bjoc.9.218

Graphical Abstract
  • thioglycoside donor. The NMR data of 22a unambiguously confirmed the presence of α-sialyl linkage (Δδ [H-9’a–H-9’b] = 0.62 ppm and J7’,8’ = 4.8 Hz) [24]. Acetal deprotection was subsequently carried out using p-TsOH in MeOH and the α-anomer of disaccharide 22b was isolated by silica gel column chromatography in
  • and acceptors that both have a free hydroxy group [27]. In this report, we employed the difference in reactivity of trichloroacetimidates and thioglycoside donors. In general, trichloroacetimidates are activated by strong Lewis acids such as TMSOTf [28], while the more stable thioglycosides require
  • the presence of a more electrophilic species such as N-iodosuccinimide/TMSOTf combinations [29][30]. To that end, thioglycoside building block 23 bearing a free OH at C-3 was synthesized following reported procedures [16] and subjected to a chemo- and stereoselective glycosylation reaction with
PDF
Album
Supp Info
Full Research Paper
Published 13 Sep 2013

Straightforward synthesis of a tetrasaccharide repeating unit corresponding to the O-antigen of Escherichia coli O16

  • Manas Jana and
  • Anup Kumar Misra

Beilstein J. Org. Chem. 2013, 9, 1757–1762, doi:10.3762/bjoc.9.203

Graphical Abstract
  • iodonium ion mediated glycosylation conditions; (c) the use of p-methoxybenzyl (PMB) ether protection as an in situ removable protecting group in a one-pot glycosylation reaction and its removal [17] and (d) the use of galactofuranosidic thioglycoside as a glycosyl donor. The iodonium ion promoted
  • the 1H and 13C NMR spectra respectively). The coupling of compound 6 with thioglycoside 4 in the presence of a combination of NIS and TfOH [18][19] in CH2Cl2/Et2O (1:3, v/v) furnished the 1,2-cis glycosylated compound 7 in 73% yield together with a minor quantity (~8%) of its other isomer, which was
  • using sodium methoxide furnished the trisaccharide acceptor 8 in 94% yield. The stereoselective glycosylation of compound 8 with D-galactofuranosyl thioglycoside 5 by using a combination of NIS/TfOH furnished the tetrasaccharide derivative 9 in 72% yield. The formation of compound 9 was supported by its
PDF
Album
Supp Info
Full Research Paper
Published 28 Aug 2013

Appel-reagent-mediated transformation of glycosyl hemiacetal derivatives into thioglycosides and glycosyl thiols

  • Tamashree Ghosh,
  • Abhishek Santra and
  • Anup Kumar Misra

Beilstein J. Org. Chem. 2013, 9, 974–982, doi:10.3762/bjoc.9.112

Graphical Abstract
  • carbonotrithioate. The reaction conditions are reasonably simple and yields were very good. Keywords: Appel reagent; carbon tetrabromide; glycosyl hemiacetal; glycosyl thiol; thioglycoside; triphenylphosphine; Introduction Thioglycosides (1-thiosugar) are widely used glycosyl donors in glycosylation reactions [1
  • -glycosyl bromide to the reactive β-glycosyl bromide in the presence of a catalytic bromide ion derived from TBAB, led to the formation of a 1,2-oxocarbonium ion by participation of the neighboring group, which finally furnished 1,2-trans-thioglycoside by the reaction of thiols under reasonably slow
  • biphasic reaction conditions. The thioglycoside formation became very slow without the addition of TBAB and the same product was obtained in a poor yield over a much longer period of time. In contrast, rapid SN2-substitution of the bromide ion at the anomeric center in α-glycosyl bromide with a
PDF
Album
Supp Info
Full Research Paper
Published 22 May 2013

Glycosylation efficiencies on different solid supports using a hydrogenolysis-labile linker

  • Mayeul Collot,
  • Steffen Eller,
  • Markus Weishaupt and
  • Peter H. Seeberger

Beilstein J. Org. Chem. 2013, 9, 97–105, doi:10.3762/bjoc.9.13

Graphical Abstract
  • toluene. Thioglycoside 35 was activated with N-iodosuccinimide (NIS) and triflic acid (TfOH) in dichloromethane and dioxane. In order to establish optimal reaction conditions, temperatures ranging from −40 °C to 25 °C were screened and the reaction time was varied between 15 and 45 minutes. After
PDF
Album
Supp Info
Letter
Published 16 Jan 2013

Acylsulfonamide safety-catch linker: promise and limitations for solid–phase oligosaccharide synthesis

  • Jian Yin,
  • Steffen Eller,
  • Mayeul Collot and
  • Peter H. Seeberger

Beilstein J. Org. Chem. 2012, 8, 2067–2071, doi:10.3762/bjoc.8.232

Graphical Abstract
  • with either glucosamine thioglycoside 17 and glucosamine trichloroacetimidate 18 or perbenzylated thioglycoside 19, which are both important building blocks for the synthesis of heparin and heparan sulfate. Three repetitions of a glycosylation using each three equivalents trichloroacetimidate 18
  • reactions result in the preactivation of the safety-catch linker, which can lead to cleavage in presence of nucleophiles. Similar results were observed when the experiments were repeated. The desired product 22 was detected in trace amounts only in the case of the coupling of thioglycoside 17 activated by
  • in the production of glycosylated linker 21, implied that sodium methoxide may directly cleave safety-catch linkers without prior activation. To examine linker reactivity in more detail, additional automated glycosylations were performed by using thioglycoside 19 activated with NIS/TfOH, on
PDF
Album
Supp Info
Letter
Published 26 Nov 2012

Convergent synthesis of the tetrasaccharide repeating unit of the cell wall lipopolysaccharide of Escherichia coli O40

  • Abhijit Sau and
  • Anup Kumar Misra

Beilstein J. Org. Chem. 2012, 8, 2053–2059, doi:10.3762/bjoc.8.230

Graphical Abstract
  • strategy. Results and Discussion The target tetrasaccharide 1 as its 2-aminoethyl glycoside was synthesized by a stereoselective glycosylation of a disaccharide acceptor 8 and a disaccharide thioglycoside donor 9 using a [2 + 2] block synthetic strategy. The disaccharide intermediates were synthesized from
  • ) exploitation of the armed–disarmed glycosylation concept for the orthogonal activation of thioglycoside during the synthesis of disaccharide derivative 9 [19]; (d) use of aminoethyl linker as the anomeric protecting group; (e) removal of benzyl groups using a combination of triethylsilane and Pd(OH)2–C [20
  • -benzylidene acetal with triethylsilane and iodine [22] furnished compound 6 in 82% yield. Stereoselective glycosylation of compound 6 with thioglycoside derivative 3 in the presence of a combination of N-iodosuccinimide (NIS) and HClO4–SiO2 [17] gave disaccharide derivative 7 in a 77% yield. Formation of
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2012

Automated synthesis of sialylated oligosaccharides

  • Davide Esposito,
  • Mattan Hurevich,
  • Bastien Castagner,
  • Cheng-Chung Wang and
  • Peter H. Seeberger

Beilstein J. Org. Chem. 2012, 8, 1601–1609, doi:10.3762/bjoc.8.183

Graphical Abstract
  • were applied to the synthesis of GM3 trisaccharide 16 previously prepared in solution phase (see above). Glucose thioglycoside building block 21 and disaccharide building block 4 served for the assembly of 16 (Scheme 4). Final saponification afforded the partially protected glycan 22 in 40% overall
  • hydroxy nucleophile on the central glucosamine. Our first attempt to glycosylate using fucose thioglycoside building block 25 afforded the product in low yield and as a mixture of anomers as confirmed by LC–MS analysis. The use of N-phenyl trifluoroacetimidate building block 24 proved more efficient
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2012

Studies on the substrate specificity of a GDP-mannose pyrophosphorylase from Salmonella enterica

  • Lu Zou,
  • Ruixiang Blake Zheng and
  • Todd L. Lowary

Beilstein J. Org. Chem. 2012, 8, 1219–1226, doi:10.3762/bjoc.8.136

Graphical Abstract
  • affording 15. The benzylidene protecting group was cleaved, together with the methyl glycoside, by acetolysis giving the tetra-O-acetylated compound 16 in 81% yield. This glycosyl acetate was converted to the corresponding thioglycoside (17), which was, in turn, coupled with dibenzyl phosphate under NIS
  • % yield. Acetolysis of 27 to the corresponding glycosyl acetate 28, followed by reaction with ethanethiol and BF3·OEt2, yielded thioglycoside 29, in a modest 39% yield from 27 over two steps. This compound was then converted to 11, in 56% yield, as outlined above, by successive phosphorylation and
  • the other they were protected with benzoyl esters. The overall yields of these two methods were 30% and 17%, respectively. In the first method (Scheme 4), the initial step was the conversion, in 78% yield, of the fully acetylated thioglycoside 31 [28] into silyl ether 32 by treatment with sodium
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2012

Synthesis and antiviral activities of spacer-linked 1-thioglucuronide analogues of glycyrrhizin

  • Christian Stanetty,
  • Andrea Wolkerstorfer,
  • Hassan Amer,
  • Andreas Hofinger,
  • Ulrich Jordis,
  • Dirk Claßen-Houben and
  • Paul Kosma

Beilstein J. Org. Chem. 2012, 8, 705–711, doi:10.3762/bjoc.8.79

Graphical Abstract
  • cells, wherein the 3-(2-thioethyl)-N-acetylamino- and 3-(2-thioethyl)-thio-linked glucuronide derivatives were effective inhibitors with IC50 values as low as 54 µM. Keywords: antiviral activity; carbenoxolone; glycyrrhizin; influenza A virus; thioglycoside; triterpene; Introduction The triterpene
  • corresponding glucuronyl 1-thiol 3 in 89% yield [17][18]. Reaction of 3 with an excess of 1,2-dibromoethane (3–4 equiv) in DMF in the presence of sodium hydride, with the strict exclusion of oxygen, afforded the 2-bromoethyl 1-thioglycoside 4 in 80% yield. Under these conditions formation of the bis
  • -substitution product 5 (3%) and the disulfide oxidation product of 1-thiol 3 was observed in only very minor quanities. The corresponding 2-iodoethyl derivative 6 was prepared by a Finkelstein reaction from the bromoethyl 1-thioglycoside 4 in 95% yield (Scheme 1). The previously reported 3β-amino derivative of
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2012

2-Allylphenyl glycosides as complementary building blocks for oligosaccharide and glycoconjugate synthesis

  • Hemali D. Premathilake and
  • Alexei V. Demchenko

Beilstein J. Org. Chem. 2012, 8, 597–605, doi:10.3762/bjoc.8.66

Graphical Abstract
  • acceptor 25 afforded the respective disaccharide 26 in 78–97% yield (Table 2, entries 7–10). These series of results indicates a completely orthogonal character of AP and the thioglycosides. To expand this observation, disaccharide 26 was coupled with thioglycoside acceptor 21 in the presence of TMSOTf
  • leading to trisaccharide 30 in 90% (Scheme 3). Since 30 is equipped with the SPh anomeric leaving group, it is available for further chain elongation directly. In a similar fashion, thioglycoside disaccharide 16 was coupled with AP acceptors 25 and 13 in the presence of MeOTf to afford trisaccharides 31
PDF
Album
Supp Info
Full Research Paper
Published 18 Apr 2012

Electrochemical generation of 2,3-oxazolidinone glycosyl triflates as an intermediate for stereoselective glycosylation

  • Toshiki Nokami,
  • Akito Shibuya,
  • Yoshihiro Saigusa,
  • Shino Manabe,
  • Yukishige Ito and
  • Jun-ichi Yoshida

Beilstein J. Org. Chem. 2012, 8, 456–460, doi:10.3762/bjoc.8.52

Graphical Abstract
  • temperatures. However, α-selectivity was observed in the absence of base at elevated reaction temperatures. In situ generated triflic acid promotes the isomerization of β-products to α-products. Keywords: amino sugar; anomerization; electrochemical oxidation; glycosylation; thioglycoside; Introduction
  • glycosylations via glycosyl triflate intermediates. In this paper, we report the generation, accumulation, and characterization by low-temperature NMR analyses, of the corresponding glycosyl triflates. Electrochemical glycosylation of the thioglycoside donor with 2,3-oxazolidinone protecting group gave both 1,2
  • of thioglycoside 1a (4 mA, 1 h) exhibited a single set of peaks for glycosyl triflate 2a in the 1H NMR spectrum at −80 °C (Figure 1). In contrast to the previous reports by Kerns and Ye, the corresponding β-triflate was not observed under these conditions [11][19]. The small coupling constant of the
PDF
Album
Supp Info
Letter
Published 28 Mar 2012

Convergent synthesis of the tetrasaccharide repeating unit of the O-antigen of Shigella boydii type 9

  • Abhishek Santra and
  • Anup Kumar Misra

Beilstein J. Org. Chem. 2011, 7, 1182–1188, doi:10.3762/bjoc.7.137

Graphical Abstract
  • conversion of O-acetyl group to O-benzyl group [22], (iv) activation of glycosyl trichloroacetimidate and thioglycoside donors by perchloric acid supported on silica (HClO4–SiO2) [23][24][25][26], and late stage TEMPO mediated selective oxidation [27][28][29] of the primary hydroxy group to the carboxylic
  • tetrasaccharide 1 was achieved by the stereoselective coupling of a D-maltose derived disaccharide derivative 2 and a disaccharide thioglycoside derivative 7 followed by functional group manipulations of the resulting tetrasaccharide derivative 8. For this purpose, suitably functionalized reaction intermediates 2
  • (br s, H-1C), 4.95 (d, J = 3.6 Hz, H-1D) in the 1H NMR and signals at δ 92.8 (C-1D), 81.0 (C-1C) in the 13C NMR spectrum). Compound 6 was transformed into disaccharide thioglycoside donor 7 in 91% yield under a one-pot deacetylation–benzylation reaction condition [22] (Scheme 2). In this case, the
PDF
Album
Supp Info
Full Research Paper
Published 29 Aug 2011
Other Beilstein-Institut Open Science Activities