Search results

Search for "triazole" in Full Text gives 297 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Cationic oligonucleotide derivatives and conjugates: A favorable approach for enhanced DNA and RNA targeting oligonucleotides

  • Mathias B. Danielsen and
  • Jesper Wengel

Beilstein J. Org. Chem. 2021, 17, 1828–1848, doi:10.3762/bjoc.17.125

Graphical Abstract
  • commercially available 3’-phosphoramidite derivative of 5’-O-dimethoxytrityl-2’-O-methyluridine could be converted into an N4-triazole-modified 2’-OMe-cytidine phosphoramidite [60]. This concept was later used to prepare spermine-functionalized 2’-OMe and 2’-O-((2-methoxy)ethyl) (MOE)cytidine phosphoramidites
  • complementary RNA [61]. In general, the study showed that the modifications had a positive effect on Tm for the formed ON/RNA duplex for all ONs substituted with cytidine monomers 26 or 27. These findings were also in agreement with an earlier study where the conjugation of a spermine-substituted triazole group
  • -toluenesulfonyl-5’-O-dimethoxytrityl-2’-deoxycytidine followed by ON synthesis [63]. A less investigated strategy is the anchoring of amine functionalities onto purines. Beginning with adenine, the N6 position has been the most explored attachment point. For example, a 2’-deoxy-N6-triazole-substituted adenosine
PDF
Album
Review
Published 29 Jul 2021

A recent overview on the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles

  • Pezhman Shiri,
  • Ali Mohammad Amani and
  • Thomas Mayer-Gall

Beilstein J. Org. Chem. 2021, 17, 1600–1628, doi:10.3762/bjoc.17.114

Graphical Abstract
  • synthesis of a wide variety of relevant 1,4,5-trisubstituted 1,2,3-triazole molecules are reported. The synthesis of this category of diverse fully functionalized 1,2,3-triazoles has become a necessary and unique research subject in modern synthetic organic key transformations in academia, pharmacy, and
  • -triazoles; N-containing heterocycles; 1,4,5-trisubstituted 1,2,3-triazoles; Introduction A high number of N-heterocycles [1][2][3][4] are identified, and this number is increasing very quickly [5][6][7][8]. Among them, the small heterocyclic ring of the 1,2,3-triazole is present in a broad variety of
  • compounds with not only biological but also industrial significance [9][10][11]. It possesses a cyclic scaffold with carbon and three nitrogen elements in the ring [12][13][14][15]. An immense versatility of biological properties is possessed by 1,2,3‐triazole heterocyclic systems, and many strategies are
PDF
Album
Review
Published 13 Jul 2021

Double-headed nucleosides: Synthesis and applications

  • Vineet Verma,
  • Jyotirmoy Maity,
  • Vipin K. Maikhuri,
  • Ritika Sharma,
  • Himal K. Ganguly and
  • Ashok K. Prasad

Beilstein J. Org. Chem. 2021, 17, 1392–1439, doi:10.3762/bjoc.17.98

Graphical Abstract
  • . The heterocyclic structures which were found to be attached to these double-headed nucleosides include triazolophthalazine [11], 4,6-di-tert-butylbenzoxazole [12], mesitylisoxazole [13], 5-trimethylsilyl-1,2,3-triazole [14], 1-pivaloyloxymethyl-1H-1,2,3-triazole [15], 1,3,4-oxadiazino[6,5-b]indole [16
  • ], 6,7-dihydro-6-oxo-5H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazine [17], 1,2,4-triazino[5,6-b]indole [18], 1,3,4-thiadiazoline [19], 1,3,4-oxadiazoline [19], 1,2,4-triazoline [19], 3-mercapto-1H-1,2,4-triazole [20], 1,3,4-oxadiazole-2(3H)-thione [20], 4-amino-5-mercapto-4H-1,2,4-triazole [20], and 1,2,4
  • ]. Nielsen and co-workers [43] synthesized 2′-(4-(thymin-1-ylmethyl)-1,2,3-triazole-1-yl)- and 2′-(4-(N6-benzoyladenine-9-ylmethyl)-1,2,3-triazole-1-yl)-substituted double-headed nucleosides of 2′-deoxy-5′-O-(4,4′-dimethoxytrityl)uridine (14 and 15) from the nucleoside azide 12 which in turn was obtained by
PDF
Album
Review
Published 08 Jun 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

Synthetic accesses to biguanide compounds

  • Oleksandr Grytsai,
  • Cyril Ronco and
  • Rachid Benhida

Beilstein J. Org. Chem. 2021, 17, 1001–1040, doi:10.3762/bjoc.17.82

Graphical Abstract
  • ). It is interesting to note that heterocyclic nitrogen atoms can also react with cyanoguanidine. For example, Zeng et al. reported the conversion of 1,2,4-triazole derivatives into their related biguanide products in good 70% yield by simple reflux heating in ethanol (Scheme 10). The resulting
PDF
Album
Review
Published 05 May 2021

Beyond ribose and phosphate: Selected nucleic acid modifications for structure–function investigations and therapeutic applications

  • Christopher Liczner,
  • Kieran Duke,
  • Gabrielle Juneau,
  • Martin Egli and
  • Christopher J. Wilds

Beilstein J. Org. Chem. 2021, 17, 908–931, doi:10.3762/bjoc.17.76

Graphical Abstract
  • (suNA) (Figure 7J) [167], 2'-Me LNAs (Figure 7K) [168][169], 6'-Me-2'-O,4'-C-ethylene-bridged (6'-Me-ENA) (Figure 7L) [170], and various triazole-linked LNA (Figure 7M) [171][172] that have all shown the ability to modulate LNA properties. Arabinose and fluoroarabinose nucleic acids Arabino nucleic
PDF
Album
Review
Published 28 Apr 2021

Microwave-assisted multicomponent reactions in heterocyclic chemistry and mechanistic aspects

  • Shivani Gulati,
  • Stephy Elza John and
  • Nagula Shankaraiah

Beilstein J. Org. Chem. 2021, 17, 819–865, doi:10.3762/bjoc.17.71

Graphical Abstract
PDF
Album
Review
Published 19 Apr 2021

Synthesis of β-triazolylenones via metal-free desulfonylative alkylation of N-tosyl-1,2,3-triazoles

  • Soumyaranjan Pati,
  • Renata G. Almeida,
  • Eufrânio N. da Silva Júnior and
  • Irishi N. N. Namboothiri

Beilstein J. Org. Chem. 2021, 17, 762–770, doi:10.3762/bjoc.17.66

Graphical Abstract
  • compounds and N-tosyl triazole in moderate to high yields. Our synthesis takes place with complete regioselectivity as confirmed by crystallographic analysis which is rationalized by a suitable mechanistic proposal. This method provides an efficient, versatile and straightforward strategy towards the
  • precursors in denitrogenative transannulation reactions under metal-catalysed conditions to form other heterocycles such as functionalized pyrroles, imidazoles and pyridines (Scheme 1b) [11][12][13]. The traditional method for the synthesis of triazole unit is the Huisgen 1,3-dipolar cycloaddition between
  • -arylation [32], NIS-mediated N2-arylation [33], etc. Although these are significant advances towards metal-free functionalization of triazoles, many of them suffer from poor regioselectivity. Therefore, a new method for N1-selective alkylation of the triazole moiety under simple, mild and metal-free
PDF
Album
Supp Info
Letter
Published 31 Mar 2021

Effective microwave-assisted approach to 1,2,3-triazolobenzodiazepinones via tandem Ugi reaction/catalyst-free intramolecular azide–alkyne cycloaddition

  • Maryna O. Mazur,
  • Oleksii S. Zhelavskyi,
  • Eugene M. Zviagin,
  • Svitlana V. Shishkina,
  • Vladimir I. Musatov,
  • Maksim A. Kolosov,
  • Elena H. Shvets,
  • Anna Yu. Andryushchenko and
  • Valentyn A. Chebanov

Beilstein J. Org. Chem. 2021, 17, 678–687, doi:10.3762/bjoc.17.57

Graphical Abstract
  • molecular frameworks in medicinal chemistry. Of these, 1,4-benzodiazepines fused with pyrazole or triazole cycles are the base for many drugs (Figure 1) [1]. The spectrum of their biological activity includes tranquilizing, muscular relaxant, anticonvulsant, and sedative effects [2]. The general application
  • receptor (CCK1R) located in the gastrointestinal tract. It is a potential target for treating obesity and diabetes [5]. Although derivatives of 1,2,3-triazolobenzodiazepines are less studied as to their 1,2,4-triazole fused analogs, 1,2,3-triazolobenzodiazepinone A (Figure 2) has already reached clinical
  • signal rising at 8.45 ppm (chemical shift is close to triazole proton value), that can indicate the transformation of the alkyne moiety to the triazole ring. The signals of the aromatic ring also significantly change: the aromatic multiplets observed in the 1H NMR spectrum of the starting material turn
PDF
Album
Supp Info
Full Research Paper
Published 08 Mar 2021

Synthesis of N-perfluoroalkyl-3,4-disubstituted pyrroles by rhodium-catalyzed transannulation of N-fluoroalkyl-1,2,3-triazoles with terminal alkynes

  • Olga Bakhanovich,
  • Viktor Khutorianskyi,
  • Vladimir Motornov and
  • Petr Beier

Beilstein J. Org. Chem. 2021, 17, 504–510, doi:10.3762/bjoc.17.44

Graphical Abstract
  • -disubstituted pyrroles (minor products). The observed selectivities in the case of the reactions with aliphatic alkynes were high. Keywords: pyrrole; transannulation; rhodium carbene; triazole; Introduction Pyrroles are known to be important structural moieties appearing in natural products, synthetic drugs
  • , conveniently prepared by [3 + 2] cycloadditions of terminal alkynes with sulfonyl azides, have been used as the precursors to N-sulfonylindoles by transition-metal-catalyzed transannulation reactions. In the presence of Rh(II) or Ni(0) catalysts the triazole ring-opening takes place and intermediate highly
  • incomplete conversion. Reducing the reaction temperature to 80 °C afforded a full conversion of the starting triazole, but no reaction took place at 60 °C. The optimized conditions are presented in Table 1, entry 8; however, for the following reaction scope study, a temperature of 100 °C and 20 min reaction
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2021

Deoxygenative C2-heteroarylation of quinoline N-oxides: facile access to α-triazolylquinolines

  • Geetanjali S. Sontakke,
  • Rahul K. Shukla and
  • Chandra M. R. Volla

Beilstein J. Org. Chem. 2021, 17, 485–493, doi:10.3762/bjoc.17.42

Graphical Abstract
  • triazolylation of various heterocyclic N-oxides using sulfuryldiimidazole and 1,2,4-triazole, respectively. However, their protocol affords a mixture of C2- and C4-heteroarylated products [52][53]. More recently, Muthusubramanian and co-workers further expanded the scope of Keith’s protocol to a variety of
  • reaction conditions (Scheme 1b) [58][59][60][61][62]. Results and Discussion We initiated our trials employing easily accessible quinoline N-oxide (1a) and 1-tosyl-4-phenyl-1,2,3-triazole (2a) as model substrates. Subjecting the reaction mixture to 100 °C in the presence of DIPEA in 1,2-dichloroetane (DCE
  • and observed that triazoles bearing electron-donating groups on the aromatic ring, such as alkyl or methoxy moieties, were well tolerated, furnishing the corresponding products 3b–h in 83–95% yield. For electron-poor substituents (CF3 and F) on the aryl ring of the triazole, the corresponding products
PDF
Album
Supp Info
Letter
Published 17 Feb 2021

1,2,3-Triazoles as leaving groups: SNAr reactions of 2,6-bistriazolylpurines with O- and C-nucleophiles

  • Dace Cīrule,
  • Irina Novosjolova,
  • Ērika Bizdēna and
  • Māris Turks

Beilstein J. Org. Chem. 2021, 17, 410–419, doi:10.3762/bjoc.17.37

Graphical Abstract
  • (triazole)), 7.93 (s, 1H, H-C(8)), 7.91 (d, 3J = 7.6 Hz, 2H, Ar), 7.39 (t, 3J = 7.6 Hz, 2H, Ar), 7.30 (t, 3J = 7.6 Hz, 1H, Ar), 4.65 (t, 3J1’’,2’’ = 6.7 Hz, 2H, H2C(1’’)), 4.26 (t, 3J1’,2’ = 7.2 Hz, 2H, H2C(1’)), 1.96 (tq, 3J1’’,2’’= 6.7 Hz, 3J2’’-3’’= 7.4 Hz, 2H, H2C(2’’)), 1.93‒1.82 (m, 2H, H2C(2’)), 1.35
  • 9.38 (s, 1H, H-C(triazole)), 8.70 (s, 1H, H-C(8)), 8.02 (d, 3J = 7.6 Hz, 2H, Ar), 7.50 (t, 3J = 7.6 Hz, 2H, Ar), 7.39 (t, 3J = 7.6 Hz, 1H, Ar), 6.06 (d, 3J1’,2’ = 5.8 Hz, 1H, H-C(1’)), 4.65 (dd, 3J1’,2’ = 5.8 Hz, 3J2’,3’ = 4.8 Hz, 1H, H-C(2’)), 4.29 (s, 3H, (-OCH3)), 4.22 (dd, 3J2’,3’ = 4.8 Hz, 3J3’,4
  • , 1H, H-C(triazole)), 8.02 (s, 1H, H-C(8)), 7.94 (d, 3J = 7.5 Hz, 2H, Ar), 7.47 (d, 3J = 7.5 Hz, 2H, Ar), 7.37 (t, 3J = 7.5 Hz, 1H, Ar), 4.28 (t, 3J1’,2’ = 7.2 Hz, 2H, H2C(1’)), 1.96‒1.83 (m, 2H, H2C(2’)), 1.40‒1.32 (m, 4H, H2C(3’), H2C(4’)), 1.31‒1.23 (m, 4H, H2C(5’), H2C(6’)), 0.86 (t, 3J6’,7’ = 6.9
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2021

1,2,3-Triazoles as leaving groups in SNAr–Arbuzov reactions: synthesis of C6-phosphonated purine derivatives

  • Kārlis-Ēriks Kriķis,
  • Irina Novosjolova,
  • Anatoly Mishnev and
  • Māris Turks

Beilstein J. Org. Chem. 2021, 17, 193–202, doi:10.3762/bjoc.17.19

Graphical Abstract
  • leaving group in SNAr reactions with S- and N-nucleophiles [19][20][21]. It is worth to note that 2/6-amino-6/2-triazolylpurines possess high levels of fluorescence [19][22][23][24]. Herein, we describe an extension for SNAr reactions that makes use of the 1,2,3-triazole leaving group of 2,6
  • -bistriazolylpurines. This led to a discovery of novel C–P bond formations from C–N bonds in SNAr–Arbuzov reactions (I→J, Scheme 1). The obtained series of compounds combines three structural motifs that are important in terms of medicinal chemistry in one molecule: purine, triazole, and phosphonate. Results and
  • crude reaction mixtures revealed the presence of the products 7a and 8a (Scheme 3). When the latter mixture was submitted to CuAAC with phenylacetylene (CuI/Et3N/AcOH/EtOH (or DCM), CuSO4∙5H2O/sodium ascorbate/EtOH (or DMF)), no triazole formation at the purine C2 position was observed. We briefly tried
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2021

Novel library synthesis of 3,4-disubstituted pyridin-2(1H)-ones via cleavage of pyridine-2-oxy-7-azabenzotriazole ethers under ionic hydrogenation conditions at room temperature

  • Romain Pierre,
  • Anne Brethon,
  • Sylvain A. Jacques,
  • Aurélie Blond,
  • Sandrine Chambon,
  • Sandrine Talano,
  • Catherine Raffin,
  • Branislav Musicki,
  • Claire Bouix-Peter,
  • Loic Tomas,
  • Gilles Ouvry,
  • Rémy Morgentin,
  • Laurent F. Hennequin and
  • Craig S. Harris

Beilstein J. Org. Chem. 2021, 17, 156–165, doi:10.3762/bjoc.17.16

Graphical Abstract
  • -opening of the triazole moiety through a Dimroth rearrangement process affording 20 (reaction becomes instantly bright red); c) reduction of diazonium species to afford intermediate 21, observed by UV-LC–MS; and finally d) reductive cleavage of the -O–NH- bond, usually carried out under catalytic
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2021

Chiral anion recognition using calix[4]arene-based ureido receptors in a 1,3-alternate conformation

  • Tereza Horáčková,
  • Jan Budka,
  • Vaclav Eigner,
  • Wen-Sheng Chung,
  • Petra Cuřínová and
  • Pavel Lhoták

Beilstein J. Org. Chem. 2020, 16, 2999–3007, doi:10.3762/bjoc.16.249

Graphical Abstract
  • triazole functional groups (to name at least some of them) has appeared during the last two decades [19][20][21]. Due to well-established functionalisation approaches, calix[4]arenes [22][23][24] are frequently used as molecular platform in the design of more complex receptor systems. The existence of four
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2020

Regioselective synthesis of heterocyclic N-sulfonyl amidines from heteroaromatic thioamides and sulfonyl azides

  • Vladimir Ilkin,
  • Vera Berseneva,
  • Tetyana Beryozkina,
  • Tatiana Glukhareva,
  • Lidia Dianova,
  • Wim Dehaen,
  • Eugenia Seliverstova and
  • Vasiliy Bakulev

Beilstein J. Org. Chem. 2020, 16, 2937–2947, doi:10.3762/bjoc.16.243

Graphical Abstract
  • , Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium 10.3762/bjoc.16.243 Abstract N-Sulfonyl amidines bearing 1,2,3-triazole, isoxazole, thiazole and pyridine substituents were successfully prepared for the first time by reactions of primary, secondary and tertiary heterocyclic
  • thioamides with alkyl- and arylsulfonyl azides. For each type of thioamides a reliable procedure to prepare N-sulfonyl amidines in good yields was found. Reactions of 1-aryl-1,2,3-triazole-4-carbothioamides with azides were shown to be accompanied with a Dimroth rearrangement to form 1-unsubstituted 5
  • -arylamino-1,2,3-triazole-4-N-sulfonylcarbimidamides. 2,5-Dithiocarbamoylpyridine reacts with sulfonyl azides to form a pyridine bearing two sulfonyl amidine groups. Keywords: amidines; Dimroth rearrangement; isoxazoles; sulfonyl thiazoles; thioamides; 1,2,3-triazoles; Introduction The biological activity
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2020

Synthesis and investigation of quadruplex-DNA-binding, 9-O-substituted berberine derivatives

  • Jonas Becher,
  • Daria V. Berdnikova,
  • Heiko Ihmels and
  • Christopher Stremmel

Beilstein J. Org. Chem. 2020, 16, 2795–2806, doi:10.3762/bjoc.16.230

Graphical Abstract
  • not provide evidence for a significant effect of the adenine unit on the binding affinity of the ligands, for example, by additional association with the loops, presumably because the adenine residue is sterically shielded by the neighboring triazole unit. Keywords: berberine alkaloids; DNA ligands
  • contributed significantly to the binding affinity depending on their spacing from the π-stacking unit. In the case of 4a–e, however, the position of the triazole and adenine unit relative to the berberine does not appear to be highly relevant for the overall binding affinity. It may be concluded that the
  • binding constants, selectivities or optical responses should have been observed with the variation of the linker length. It may be concluded that the triazole ring, used as a synthetically convenient connection unit, imposes too much steric hindrance and restricted conformational flexibility in the
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2020

Water-soluble host–guest complexes between fullerenes and a sugar-functionalized tribenzotriquinacene assembling to microspheres

  • Si-Yuan Liu,
  • Xin-Rui Wang,
  • Man-Ping Li,
  • Wen-Rong Xu and
  • Dietmar Kuck

Beilstein J. Org. Chem. 2020, 16, 2551–2561, doi:10.3762/bjoc.16.207

Graphical Abstract
  • , the 1H NMR spectrum of TBTQ-(OAcG)6 exhibits two singlet resonances at δ = 8.62 and δ = 8.58 ppm, each of which indicates three equivalent protons of the six triazole rings. Likewise, two singlets at δ = 7.33 and δ = 7.30 ppm are due to two sets of three equivalent arene protons of the TBTQ core [40
  • ]. The acetyl protons of the protected glucose residues appear as eight distinct resonances. The 13C NMR spectrum shows a similar splitting. The triazole carbons resonate at δ = 123.71 and δ = 123.69 ppm and at δ = 143.88 and δ = 143.79 ppm, indicating two sets of magnetically nonequivalent linkers. This
  • of the resonances did not shift significantly, the triazole pair of singlets was shifted to higher field by Δδ = −0.14 ppm (see Figure S2 in Supporting Information File 1). All these observations reflect the molecular C3-symmetry of TBTQ-(OAcG)6 in solution and the presence of two diastereotopic sets
PDF
Album
Supp Info
Full Research Paper
Published 14 Oct 2020

Conformational preferences of fluorine-containing agrochemicals and their implications for lipophilicity prediction

  • Daniela Rodrigues Silva,
  • Joyce K. Daré and
  • Matheus P. Freitas

Beilstein J. Org. Chem. 2020, 16, 2469–2476, doi:10.3762/bjoc.16.200

Graphical Abstract
  • geometry is quite similar among the three conformers. Only for Iga, where the gauche fluorine atom points to the opposite direction of the amine group, the triazole ring was farther away from the 1,2-disubstituted ethane moiety. Note that the gas-phase relative conformational energy ΔE increases, i.e
PDF
Album
Supp Info
Full Research Paper
Published 05 Oct 2020

Design and synthesis of a bis-macrocyclic host and guests as building blocks for small molecular knots

  • Elizabeth A. Margolis,
  • Rebecca J. Keyes,
  • Stephen D. Lockey IV and
  • Edward E. Fenlon

Beilstein J. Org. Chem. 2020, 16, 2314–2321, doi:10.3762/bjoc.16.192

Graphical Abstract
  • of 6 with an excess of known (see Supporting Information File 1) dialkyne 10 under several of the most common conditions produced triazole 11 in only modest yields (Scheme 2). The best conditions involved using Cu(MeCN)4PF6 as the copper(I) source, tris(2-benzimidazolylmethyl)amine as a ligand, and
  • ascorbic acid to provide a 42% yield of triazole 11. Alkylation of diethyl 2,5-dihydroxyterephthalate (12) with 11 under standard conditions provided low yields (12–18%) of the core diester 13, which contains all the atoms of host 1. The yields for this route were disappointingly low, so it was hoped that
  • exhibit this behavior. Two separate triazole peaks were observed (8.19 and 8.38 ppm), consistent with a new triazole ring being formed. The mass spectrum of the product showed peaks for the expected mass of the TLC product(s) and various cation adducts: (peak mass, assignment, relative intensity): 1563.9
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2020

Automated high-content imaging for cellular uptake, from the Schmuck cation to the latest cyclic oligochalcogenides

  • Rémi Martinent,
  • Javier López-Andarias,
  • Dimitri Moreau,
  • Yangyang Cheng,
  • Naomi Sakai and
  • Stefan Matile

Beilstein J. Org. Chem. 2020, 16, 2007–2016, doi:10.3762/bjoc.16.167

Graphical Abstract
  • reported cell-penetrating streptavidin, in which four asparagusic acids are covalently bound to the protein through irreversible triazole linkages [59]. The CP50 value of 7.3 ± 0.5 µM of 25 was not far above the CP50 value of 3.1 ± 0.5 µM of HIV Tat, the original CPP [55]. As the uptake efficiency
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2020

Design, synthesis and application of carbazole macrocycles in anion sensors

  • Alo Rüütel,
  • Ville Yrjänä,
  • Sandip A. Kadam,
  • Indrek Saar,
  • Mihkel Ilisson,
  • Astrid Darnell,
  • Kristjan Haav,
  • Tõiv Haljasorg,
  • Lauri Toom,
  • Johan Bobacka and
  • Ivo Leito

Beilstein J. Org. Chem. 2020, 16, 1901–1914, doi:10.3762/bjoc.16.157

Graphical Abstract
  • example, a carbazole-urea macrocycle was reported previously [10], however, the binding of anions occurred outside the receptor due to modest dimensions of the macrocyclic cavity. Using click-chemistry, a carbazole-triazole macrocycle, “tricarb”, was prepared that showed the ability to form non-covalent
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2020

Clickable azide-functionalized bromoarylaldehydes – synthesis and photophysical characterization

  • Dominik Göbel,
  • Marius Friedrich,
  • Enno Lork and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2020, 16, 1683–1692, doi:10.3762/bjoc.16.139

Graphical Abstract
  • alkynes, exhibiting different degrees of steric demand, was performed in high efficiency. Finally, we investigated the photophysical properties of the azide-functionalized arenes and their covalently linked triazole derivatives to gain deeper insight towards the effect of these covalent linkers on the
  • azide state and the linked triazole state, on the emission properties of these compounds (Figure 1). Results and Discussion Syntheses para- and ortho-bromobenzaldehyde 3 and 4 We initiated our synthetic investigations towards azide-functionalized para-bromobenzaldehyde 3 with a two-step sequence
  • bromocarbaldehydes 3, 4, and 5 were successfully isolated in excellent yields of >90%. As a further model functionalization, the sterically demanding adamantyl substituted triazole 42 was subjected to a methylation reaction with Meerwein′s salt (trimethyloxonium tetrafluoroborate) to deliver the N-methylated
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2020

Azidophosphonium salt-directed chemoselective synthesis of (E)/(Z)-cinnamyl-1H-triazoles and regiospecific access to bromomethylcoumarins from Morita–Baylis–Hillman adducts

  • Soundararajan Karthikeyan,
  • Radha Krishnan Shobana,
  • Kamarajapurathu Raju Subimol,
  • J. Helen Ratna Monica and
  • Ayyanoth Karthik Krishna Kumar

Beilstein J. Org. Chem. 2020, 16, 1579–1587, doi:10.3762/bjoc.16.130

Graphical Abstract
  • transformations for complex molecules [29][30][31]. Two individual research groups have reported the multistep pathway to access the cinnamyl-1H-1,2,3-triazole derivatives IX from acetates of MBH adducts (Scheme 2) [32][33]. The other preferable moiety for triazole transformations is the allyl halide of MBH
  • equiv) and CuI (3 mol %) at room temperature. To our expectations, the reaction afforded the (E)-cinnamyl-1H-1,2,3-triazole in a low yield of 24% (Table 1, entry 1). Thereby, we anticipated that an increase in the proportion of the AzPS would substantially increase the yield of 3a (Table 1, entries 2
  • efficiency of this reaction. The substrate scope of the optimized reaction and its limitations were further extended to structurally distinct MBH adducts (Scheme 3). The MBH adducts derived from methoxy and ethoxy acrylate stereochemically afforded the (E)-cinnamyl-1,4-disubstituted 1,2,3-triazole
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2020

Recent synthesis of thietanes

  • Jiaxi Xu

Beilstein J. Org. Chem. 2020, 16, 1357–1410, doi:10.3762/bjoc.16.116

Graphical Abstract
  • the synthesis of 3-substituted thietanes 400 from (1-chloroalkyl)thiiranes 398 (Scheme 84). Nitrogen-containing aromatic heterocycles, such as 2-chloro-5(6)-nitrobenzimidazole (401) and 3,5-dibromo-1,2,4-triazole (402), were used as nucleophiles in the reaction with chloromethylthiirane (398a) giving
PDF
Album
Review
Published 22 Jun 2020
Other Beilstein-Institut Open Science Activities