Search results

Search for "carbonyl compounds" in Full Text gives 237 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Direct synthesis of anomeric tetrazolyl iminosugars from sugar-derived lactams

  • Michał M. Więcław and
  • Bartłomiej Furman

Beilstein J. Org. Chem. 2021, 17, 115–123, doi:10.3762/bjoc.17.12

Graphical Abstract
  • . Although the Vilsmeier–Haack reaction [1] or amide reduction with LiAlH4 are textbook examples that easily come to mind, there are not many other methods available. Simple alkyl and aryl amides, unlike other carbonyl compounds, typically do not undergo direct addition by a nucleophile, including active
PDF
Album
Supp Info
Full Research Paper
Published 13 Jan 2021

Recent developments in enantioselective photocatalysis

  • Callum Prentice,
  • James Morrisson,
  • Andrew D. Smith and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2020, 16, 2363–2441, doi:10.3762/bjoc.16.197

Graphical Abstract
  • desired products 267 or 268 in moderate yields and enantioselectivities (3 examples, up to 75:25 er for 267 and 2 examples, up to 68:32 er for 268). Lewis acid catalysis Lewis acids have been known for decades to activate carbonyl compounds through the formation of coordination complexes that increases
PDF
Album
Review
Published 29 Sep 2020

Reactions of 3-aryl-1-(trifluoromethyl)prop-2-yn-1-iminium salts with 1,3-dienes and styrenes

  • Thomas Schneider,
  • Michael Keim,
  • Bianca Seitz and
  • Gerhard Maas

Beilstein J. Org. Chem. 2020, 16, 2064–2072, doi:10.3762/bjoc.16.173

Graphical Abstract
  • reaction of trifluoroacetaldehyde hemiaminals with enolizable carbonyl compounds in the presence of a strong base [23], the reaction of aldiminium salts with (trifluoromethyl)trimethylsilane/Lewis base [24], and the preparation of secondary α-(trifluoromethyl)propargylamines from imines CF3CH=NR and
PDF
Album
Supp Info
Full Research Paper
Published 24 Aug 2020

Controlling the stereochemistry in 2-oxo-aldehyde-derived Ugi adducts through the cinchona alkaloid-promoted electrophilic fluorination

  • Yuqing Wang,
  • Gaigai Wang,
  • Anatoly A. Peshkov,
  • Ruwei Yao,
  • Muhammad Hasan,
  • Manzoor Zaman,
  • Chao Liu,
  • Stepan Kashtanov,
  • Olga P. Pereshivko and
  • Vsevolod A. Peshkov

Beilstein J. Org. Chem. 2020, 16, 1963–1973, doi:10.3762/bjoc.16.163

Graphical Abstract
  • carbonyl compounds promoted by cinchona alkaloid derivatives developed independently by Shibata, Takeuchi and co-workers [65][66] and by the group of Cahard [67][68][69][70]. The method proved to be applicable to a broad range of substrates under a variety of conditions [71][72][73][74][75][76][77][78] and
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2020

Fluorohydration of alkynes via I(I)/I(III) catalysis

  • Jessica Neufeld,
  • Constantin G. Daniliuc and
  • Ryan Gilmour

Beilstein J. Org. Chem. 2020, 16, 1627–1635, doi:10.3762/bjoc.16.135

Graphical Abstract
  • ]. Remarkable advances in the direct fluorination (F2/N2) of carbonyl compounds by Sandford and co-workers [14][15] are noteworthy in this regard, and mitigate the expense and poor atom economy associated with stoichiometric approaches. Moreover, this substructure provides a versatile entry point for subsequent
PDF
Album
Supp Info
Full Research Paper
Published 10 Jul 2020

Mechanochemical green synthesis of hyper-crosslinked cyclodextrin polymers

  • Alberto Rubin Pedrazzo,
  • Fabrizio Caldera,
  • Marco Zanetti,
  • Silvia Lucia Appleton,
  • Nilesh Kumar Dhakar and
  • Francesco Trotta

Beilstein J. Org. Chem. 2020, 16, 1554–1563, doi:10.3762/bjoc.16.127

Graphical Abstract
  • degree of crosslinking, thus influencing the final properties [1][2]. Among the various bifunctional compounds that could be used as crosslinking agents, active carbonyl compounds, such as carbonyldiimidazole (CDI) and diphenyl carbonate have given interesting results in the last 20 years. The produced
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2020

An overview on disulfide-catalyzed and -cocatalyzed photoreactions

  • Yeersen Patehebieke

Beilstein J. Org. Chem. 2020, 16, 1418–1435, doi:10.3762/bjoc.16.118

Graphical Abstract
  • also catalyze the formation of four-membered ring intermediates between double or triple bonds and oxygen, and thus converting unsaturated hydrocarbons to carbonyl compounds. Regarding the oxidation of alkynes, Wang reported a method for preparing diaryl-1,2-diketones from diarylalkynes in the presence
  • ). One exceptional decrease in the yield of the hydroxylation product (13–33%) occurred when β-keto esters with methoxy groups on the phenyl ring were used, but the hydroxymethylation yield was just undulated slightly. Other carbonyl compounds, 1,3-diones, and functionalized five-, six-, and seven
  • disulfide-catalyzed isomerization of allyl alcohols to carbonyl compounds under high-pressure mercury lamp irradiation (λ > 300 nm) at room temperature. The yield of the reaction reached up to 91% (Scheme 23) [30]. Using the water-soluble dendrimer disulfide, the photoinduced isomerization in water was also
PDF
Album
Review
Published 23 Jun 2020

Oxime radicals: generation, properties and application in organic synthesis

  • Igor B. Krylov,
  • Stanislav A. Paveliev,
  • Alexander S. Budnikov and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2020, 16, 1234–1276, doi:10.3762/bjoc.16.107

Graphical Abstract
  • as scavengers of C-centered radicals [9] and selective oxidation organocatalysts (for example, in the oxidation of alcohols to the corresponding carbonyl compounds [10][11]). Recently, highly reactive imidoxyl radicals (Figure 1, II) have found a wide application in the processes of hydrogen atom
  • the decomposition of iminoxyl radicals 2 generated from oximes 1 under the action of Ag2O [53] were studied by K. U. Ingold et al. (Figure 2). In most cases, the reaction was accompanied by the release of N2 and N2O, as well as the corresponding carbonyl compounds (3a–c). Dimerization of iminoxyl
PDF
Album
Review
Published 05 Jun 2020

Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis

  • Stephanie G. E. Amos,
  • Marion Garreau,
  • Luca Buzzetti and
  • Jerome Waser

Beilstein J. Org. Chem. 2020, 16, 1163–1187, doi:10.3762/bjoc.16.103

Graphical Abstract
  • compared to other methods for radical generation [56]. Within this field, organic dyes can act as competent photocatalysts for direct HAT processes. Specifically, upon light excitation, photoactive carbonyl compounds, such as benzophenone and its derivatives, reach an electronically excited triplet state
  • , oxylacyl, and carbamoyl radicals and their analogues The photocatalyzed generation of acyl radicals is of great interest as they are precursors for the synthesis of diverse carbonyl compounds [88]. The acyl radical is generally considered as a nucleophilic radical and reacts rapidly with electron-poor π
  • radicals Thiyl (sulfenyl) radicals Thiyl radicals are common, versatile, strong nucleophilic radicals. They are efficient at performing atom abstractions, in particular with H-atoms, adding to π-systems and electrophiles, such as carbonyl compounds [166]. They can be generated from the UV irradiation of
PDF
Album
Review
Published 29 May 2020

Aldehydes as powerful initiators for photochemical transformations

  • Maria A. Theodoropoulou,
  • Nikolaos F. Nikitas and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2020, 16, 833–857, doi:10.3762/bjoc.16.76

Graphical Abstract
  • capable to induce other types of reactions, such as hydrogen atom abstraction (HAT) processes or triplet state energy transfer processes (EnT). Carbonyl compounds, especially diaryl ketones, have shown great potential as far as their catalytic scope is concerned. Benzophenone or acetophenone (64) and
  • examples where aldehydes were employed as photoinitiators in organic synthesis. Review Photophysical properties of carbonyl compounds The interest in the interaction of aldehydes with light to promote reactions can be traced many years back. In 1966, Davies and co-worker studied the energy transfer from
  • state Τ2 (π,π*), which will subsequently drive them to a lower triplet state T1 (n,π*), with the latter one being responsible for the specific reactivity of the carbonyl compounds [21][22]. During the photoexcitation of a carbonyl compound, and after they reach the T2 excited triplet state, there are
PDF
Album
Review
Published 23 Apr 2020

Recent advances in Cu-catalyzed C(sp3)–Si and C(sp3)–B bond formation

  • Balaram S. Takale,
  • Ruchita R. Thakore,
  • Elham Etemadi-Davan and
  • Bruce H. Lipshutz

Beilstein J. Org. Chem. 2020, 16, 691–737, doi:10.3762/bjoc.16.67

Graphical Abstract
  • bond formation Organoboron compounds are widely used in C–C and C–X (X = N, O) bond constructions. Straightforward methods for their synthesis involve the copper-catalyzed addition of organoboron compounds to alkynes, alkenes, and unsaturated carbonyl compounds, as well as the nucleophilic borylation
  • B2pin2 in moderate to excellent yields [127]. 2.3 β-Borylation of α,β-unsaturated compounds The use of an inexpensive transition metal like copper as catalyst is attractive for β-borylations of α,β-unsaturated carbonyl compounds, that can then be further functionalized. In 2000, an initial report
PDF
Album
Review
Published 15 Apr 2020

Copper-catalyzed enantioselective conjugate reduction of α,β-unsaturated esters with chiral phenol–carbene ligands

  • Shohei Mimura,
  • Sho Mizushima,
  • Yohei Shimizu and
  • Masaya Sawamura

Beilstein J. Org. Chem. 2020, 16, 537–543, doi:10.3762/bjoc.16.50

Graphical Abstract
  • work of Stryker and co-workers on triphenylphosphine-stabilized copper hydride complexes [1][2], copper hydrides have been widely used for conjugate reductions of α,β-unsaturated carbonyl compounds [3]. Especially a chiral copper catalyst combined with a stoichiometric amount of a silane reagent, which
  • generated copper hydride in situ, has successfully been utilized for enantioselective reactions with β,β-disubstituted α,β-unsaturated carbonyl compounds [4][5][6][7][8][9][10][11]. The pioneering work of Buchwald and co-workers on the enantioselective conjugate reduction of α,β-unsaturated esters using a
  • chiral p-tol-BINAP/copper catalyst established the excellent utility of chiral bisphosphine ligands for this type of reaction [4]. Surprisingly, however, chiral ligands based on N-heterocyclic carbenes (NHCs) [12] have not been applied to the conjugate reduction of α,β-unsaturated carbonyl compounds
PDF
Album
Supp Info
Full Research Paper
Published 31 Mar 2020

p-Pyridinyl oxime carbamates: synthesis, DNA binding, DNA photocleaving activity and theoretical photodegradation studies

  • Panagiotis S. Gritzapis,
  • Panayiotis C. Varras,
  • Nikolaos-Panagiotis Andreou,
  • Katerina R. Katsani,
  • Konstantinos Dafnopoulos,
  • George Psomas,
  • Zisis V. Peitsinis,
  • Alexandros E. Koumbis and
  • Konstantina C. Fylaktakidou

Beilstein J. Org. Chem. 2020, 16, 337–350, doi:10.3762/bjoc.16.33

Graphical Abstract
  • )-one [29] derivatives, various enediyne [30][31][32], proflavine [33], N-nitroso carboxamide [34], naphazoline [35] and triazole [36] derivatives, azido carbonyl compounds [37] and N,O-diacyl-4-benzoyl-N-phenylhydroxylamines [38]. O-Acyl amidoximes, ketoximes and aldoximes (I, II and III, respectively
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2020

Copper-promoted/copper-catalyzed trifluoromethylselenolation reactions

  • Clément Ghiazza and
  • Anis Tlili

Beilstein J. Org. Chem. 2020, 16, 305–316, doi:10.3762/bjoc.16.30

Graphical Abstract
  • same group studied the direct trifluoromethylselenolation of α-brominated unsaturated carbonyl compounds with [(bpy)CuSeCF3]2 and CsF as the base (Scheme 5, top) [21]. The products were obtained with good yields as a mixture of E/Z isomers. The authors postulated the formation of a copper(III) complex
  • ) bromide. The same group also reported the trifluoromethylselenolation of β-brominated unsaturated carbonyl compounds under base-free conditions (Scheme 5, bottom) [22]. Good to excellent yields were obtained for the products. The authors demonstrated that no major alterations were observed in the presence
  • carbonyl compounds with [(bpy)CuSeCF3]2 by the group of Weng. Trifluoromethylselenolation of α,β-unsaturated ketones with [(bpy)CuSeCF3]2 by the group of Weng. Trifluoromethylselenolation of acid chlorides with [(bpy)CuSeCF3]2 by the group of Weng. Synthesis of 2-trifluoromethylselenylated benzofused
PDF
Album
Review
Published 03 Mar 2020

Ultrasonic-assisted unusual four-component synthesis of 7-azolylamino-4,5,6,7-tetrahydroazolo[1,5-a]pyrimidines

  • Yana I. Sakhno,
  • Maryna V. Murlykina,
  • Oleksandr I. Zbruyev,
  • Anton V. Kozyryev,
  • Svetlana V. Shishkina,
  • Dmytro Sysoiev,
  • Vladimir I. Musatov,
  • Sergey M. Desenko and
  • Valentyn A. Chebanov

Beilstein J. Org. Chem. 2020, 16, 281–289, doi:10.3762/bjoc.16.27

Graphical Abstract
  • approaches were described for the synthesis of 7-hydroxytetrahydroazolopyrimidines by the reaction of aminoazoles, aromatic aldehydes, and some carbonyl compounds (Scheme 1, IV and Scheme 2, VI and VIII) [4][5][16][17][18][19][20][21][22][23]. Oxygen-bridged tetrahydroazolopyrimidines III were also obtained
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2020

Efficient method for propargylation of aldehydes promoted by allenylboron compounds under microwave irradiation

  • Jucleiton J. R. Freitas,
  • Queila P. S. B. Freitas,
  • Silvia R. C. P. Andrade,
  • Juliano C. R. Freitas,
  • Roberta A. Oliveira and
  • Paulo H. Menezes

Beilstein J. Org. Chem. 2020, 16, 168–174, doi:10.3762/bjoc.16.19

Graphical Abstract
  • ; synthesis; Introduction The propargylation of carbonyl compounds is widely used in the synthesis of biologically active natural products [1]. Some examples can be found in the synthesis of histrionicotoxin [2], rhizopodin [3], bafilomycin [4], bryostatin [5], vancosamine [6] and macrolactin A [7]. Although
  • there are several stereoselective methods described for the reaction of propargyl or allenyl organometallics with carbonyl compounds [8][9][10][11][12][13][14], the control of the regioselectivity is still a major concern. This is mainly due to the metallotropic rearrangement of propargyl and allenyl
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2020

Synthesis of 3-alkenylindoles through regioselective C–H alkenylation of indoles by a ruthenium nanocatalyst

  • Abhijit Paul,
  • Debnath Chatterjee,
  • Srirupa Banerjee and
  • Somnath Yadav

Beilstein J. Org. Chem. 2020, 16, 140–148, doi:10.3762/bjoc.16.16

Graphical Abstract
  • following three categories: (i) by Wittig or Doebner reaction of indoles bearing a 3-aldehyde group; (ii) by 1,4- or 1,2-addition of α,β-enones or carbonyl compounds, followed by oxidation or elimination, respectively; (iii) by Pd-catalysed oxidative coupling of indoles with activated alkenes. Several
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2020

A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions

  • Munmun Ghosh,
  • Valmik S. Shinde and
  • Magnus Rueping

Beilstein J. Org. Chem. 2019, 15, 2710–2746, doi:10.3762/bjoc.15.264

Graphical Abstract
  • ) [23]. In the second report, the same electrode was applied for the asymmetric reduction of prochiral carbonyl compounds 10a and 12a, oximes 14 and gem-dibromo compounds 16 (Scheme 4). Among all of these the highest optical yield (16.6%) was obtained in the reduction of gem-dibromide substrates 16 to
  • method for the enantioselective synthesis of 4,5,5-trisubstituted γ-butyrolactones 193 using an electroreductive coupling of diaryl ketones 191 with α,β-unsaturated carbonyl compounds 190 bearing chiral auxiliaries derived from imidazolidin-2-one and oxazolidine-2-ones (Scheme 60). Compound 191 underwent
  • modified graphite cathode. Asymmetric hydrogenation of ketones using Raney nickel powder electrodes modified with optically active tartaric acid. Asymmetric reduction of prochiral activated olefins with a poly-ʟ-valine-coated graphite cathode. Asymmetric reduction of prochiral carbonyl compounds, oximes
PDF
Album
Review
Published 13 Nov 2019

Unexpected one-pot formation of the 1H-6a,8a-epiminotricyclopenta[a,c,e][8]annulene system from cyclopentanone, ammonia and dimethyl fumarate. Synthesis of highly strained polycyclic nitroxide and EPR study

  • Sergey A. Dobrynin,
  • Igor A. Kirilyuk,
  • Yuri V. Gatilov,
  • Andrey A. Kuzhelev,
  • Olesya A. Krumkacheva,
  • Matvey V. Fedin,
  • Michael K. Bowman and
  • Elena G. Bagryanskaya

Beilstein J. Org. Chem. 2019, 15, 2664–2670, doi:10.3762/bjoc.15.259

Graphical Abstract
  • carbonyl compounds for the synthesis of heterocyclic compounds has been repeatedly demonstrated [2][3]. We recently used a domino reaction of amino acid, ketone and dimethyl fumarate for the one-pot synthesis of a substituted pyrrolidine, which then was converted into a reduction-resistant pyrrolidine
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2019

1,5-Phosphonium betaines from N-triflylpropiolamides, triphenylphosphane, and active methylene compounds

  • Vito A. Fiore,
  • Chiara Freisler and
  • Gerhard Maas

Beilstein J. Org. Chem. 2019, 15, 2603–2611, doi:10.3762/bjoc.15.253

Graphical Abstract
  • -catalyzed reactions of acetylenic ketones and esters with pinacolborane have been discussed [7][8]. The Michael addition of PPh3 at acetylenic carbonyl compounds generates phosphonium/vinyl anion intermediates which have been trapped with CH-, NH-, OH- and SH-acids [5]. In this manner, the 1:1:1 reaction of
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2019

α,ß-Didehydrosuberoylanilide hydroxamic acid (DDSAHA) as precursor and possible analogue of the anticancer drug SAHA

  • Shital K. Chattopadhyay,
  • Subhankar Ghosh,
  • Sarita Sarkar and
  • Kakali Bhadra

Beilstein J. Org. Chem. 2019, 15, 2524–2533, doi:10.3762/bjoc.15.245

Graphical Abstract
  • reaction in the presence of Hoveyda-Grubbs 2nd generation catalyst (HG-II, 9b, 2 mol %) in refluxing DCM was found to be much faster and better yielding (77%). The product 10a was obtained as a single geometric isomer identified as E. It may be mentioned that CM with other unsaturated carbonyl compounds
PDF
Album
Supp Info
Full Research Paper
Published 24 Oct 2019

In water multicomponent synthesis of low-molecular-mass 4,7-dihydrotetrazolo[1,5-a]pyrimidines

  • Irina G. Tkachenko,
  • Sergey A. Komykhov,
  • Vladimir I. Musatov,
  • Svitlana V. Shishkina,
  • Viktoriya V. Dyakonenko,
  • Vladimir N. Shvets,
  • Mikhail V. Diachkov,
  • Valentyn A. Chebanov and
  • Sergey M. Desenko

Beilstein J. Org. Chem. 2019, 15, 2390–2397, doi:10.3762/bjoc.15.231

Graphical Abstract
  • starting material and subsequent dihydropyrimidine ring formation. The first approach [6][7] represents a two-component cyclocondensation of 5-aminotetrazole (1) as binucleophilic component and bielectrophilic α,β-unsaturated carbonyl compounds 2 (Scheme 1, reaction 1). The second method [8][9][10][11][12
PDF
Album
Supp Info
Full Research Paper
Published 08 Oct 2019

Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups

  • Xiaowei Li,
  • Xiaolin Shi,
  • Xiangqian Li and
  • Dayong Shi

Beilstein J. Org. Chem. 2019, 15, 2213–2270, doi:10.3762/bjoc.15.218

Graphical Abstract
  • nucleophilic fluoride source was reported by Doyle and co-worker (Scheme 5) [39]. Herein, the authors utilized a Pd/Cr cocatalytic system to generate the allylic fluorides with high regioselectivity (branched > linear). Alkyl fluorination of acidic carbonyl compounds and other compounds: In 2012, the group of
  • achieved using Et3N·3HF as the fluorine source with a high catalyst loading (20–30 mol %) affording the products in 45–92% yield [70]. The heteroatom-containing functional group (R1) is necessary for good reactivity and regioselectivity. α-Fluorination of acidic carbonyl compounds: In 2011, Shibatomi and
  • stereocontrolled acrylic allylic fluorides. Fluorination of acidic carbonyl compounds: In 2010, Itoh and co-workers [96] demonstrated the asymmetric fluorination of cyclic and acyclic β-ketoesters by using a catalytic amount of Co(acac)2 with (R,R)-Jacobsen’s salen ligand (Scheme 48). The α-fluorinated products
PDF
Album
Review
Published 23 Sep 2019

α-Photooxygenation of chiral aldehydes with singlet oxygen

  • Dominika J. Walaszek,
  • Magdalena Jawiczuk,
  • Jakub Durka,
  • Olga Drapała and
  • Dorota Gryko

Beilstein J. Org. Chem. 2019, 15, 2076–2084, doi:10.3762/bjoc.15.205

Graphical Abstract
  • dichroism (ECD) and TD-DFT methods. Keywords: 1,2-diols; ECD; enamines; organocatalysis; porphyrins; silyl ethers of diarylprolinols; singlet oxygen; Introduction Carbonyl compounds are one of the most important building blocks in organic synthesis. As a consequence, there is a constant need for new
  • ) or a chiral auxiliary (i.e., oxazolidinone) into the substrate structure is required for highly stereoselective reactions [20][21][22]. ‘One-pot’ photochemical α,β-functionalization of cinnamaldehyde Over the last few years, photochemical methods for asymmetric functionalisation of carbonyl compounds
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2019

Synthesis of 1-azaspiro[4.4]nonan-1-oxyls via intramolecular 1,3-dipolar cycloaddition

  • Yulia V. Khoroshunova,
  • Denis A. Morozov,
  • Andrey I. Taratayko,
  • Polina D. Gladkikh,
  • Yuri I. Glazachev and
  • Igor A. Kirilyuk

Beilstein J. Org. Chem. 2019, 15, 2036–2042, doi:10.3762/bjoc.15.200

Graphical Abstract
  • compound showed a strong absorption band at 1725 cm−1 typical for carbonyl compounds and no absorption in the region 3100–3500 cm−1, suggesting that the hydroxymethyl group was affected in the reaction. The mass spectrum featured the molecular ion [M+] = 196.1335 corresponding to the molecular formula
  • C11H18NO2, which matches element analysis data. These results allowed us to assign the structure 15 to this nitroxide. Indeed, oxidation of amines with peracids is known to proceed via oxoammonium cation formation [17][18], and the latter can oxidize alcohols to carbonyl compounds [19]. The close proximity
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2019
Other Beilstein-Institut Open Science Activities