Search results

Search for "desilylation" in Full Text gives 116 result(s) in Beilstein Journal of Organic Chemistry.

Application of chiral 2-isoxazoline for the synthesis of syn-1,3-diol analogs

  • Juanjuan Feng,
  • Tianyu Li,
  • Jiaxin Zhang and
  • Peng Jiao

Beilstein J. Org. Chem. 2019, 15, 1840–1847, doi:10.3762/bjoc.15.179

Graphical Abstract
  • the amount of the chiral Lewis acid catalyst led to a decrease of both the ee and the yield. Desilylation of the 2-isoxazolidine 1 was effected in CHCl3 using catalytic amounts of p-toluenesulfonic acid (PTSA). Though the yield of the in situ-generated 2-isoxazoline 2 bearing the 1,3-oxazolidin-2-one
PDF
Album
Supp Info
Letter
Published 01 Aug 2019

The cyclopropylcarbinyl route to γ-silyl carbocations

  • Xavier Creary

Beilstein J. Org. Chem. 2019, 15, 1769–1780, doi:10.3762/bjoc.15.170

Graphical Abstract
  • bond c to the cationic center gives rearranged cation 44, the source of the rearranged acetate 39. Ring expansion via migration of bond b in 43 gives the β-trimethylsilyl-stabilized cyclobutyl cation 45, and subsequent desilylation provides cyclobutene (35). Alternatively, cyclobutyl to homoallylic
  • 40–60 °C, but degraded slowly to a mixture of other products. The bicyclobutanes 55, 72b, and 72c were quite stable in CD3CO2D at 20 °C, where triflate studies were carried out. The bicyclobutane products 55 and 72 are a result of desilylation of the γ-silyl cations 54 and 74. Why are bicylobutanes
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

N-(1-Phenylethyl)aziridine-2-carboxylate esters in the synthesis of biologically relevant compounds

  • Iwona E. Głowacka,
  • Aleksandra Trocha,
  • Andrzej E. Wróblewski and
  • Dorota G. Piotrowska

Beilstein J. Org. Chem. 2019, 15, 1722–1757, doi:10.3762/bjoc.15.168

Graphical Abstract
  • selective desilylation and N-debenzylation with simultaneous N-Boc protection and served as a key intermediate for installation of a dimethylhexylene fragment in Julia–Kocienski olefination [56]. Pyrrolidine alkaloids (−)-hygrine ((S)-61) and (−)-hygroline ((2S,2'S)-62) were isolated from many natural
  • form a cis-2,6-disubstituted piperidine framework in (2S,3R,6S)-197. N-Methylation of (2S,3R,6S)-197 was accomplished by reductive amination while a selective deprotection provided the hydroxymethyl group in (2S,3R,6S)-198. Swern oxidation, Julia–Kocienski olefination and desilylation gave (−)-(2S,3R
  • the (+)-microcosamine A the protected piperidine (2S,3R,6S)-197 served as a starting material and was first converted into the N-Boc derivative while selective desilylation exposed the hydroxymethyl group to give (2S,3R,6S)-199. Oxidation to the respective aldehyde was accomplished with Dess–Martin
PDF
Album
Review
Published 23 Jul 2019

Synthesis of dipolar molecular rotors as linkers for metal-organic frameworks

  • Sebastian Hamer,
  • Fynn Röhricht,
  • Marius Jakoby,
  • Ian A. Howard,
  • Xianghui Zhang,
  • Christian Näther and
  • Rainer Herges

Beilstein J. Org. Chem. 2019, 15, 1331–1338, doi:10.3762/bjoc.15.132

Graphical Abstract
  • bis(tri-tert-butylphosphine)palladium(0) the yield increased to satisfying 90%. For conversion into the dicarboxylic acid 3, another change of the general procedure was necessary. Probably because of the extremely electron deficient aromatic system in 12a, desilylation at room temperature led to
PDF
Album
Supp Info
Full Research Paper
Published 18 Jun 2019

Alkylation of lithiated dimethyl tartrate acetonide with unactivated alkyl halides and application to an asymmetric synthesis of the 2,8-dioxabicyclo[3.2.1]octane core of squalestatins/zaragozic acids

  • Herman O. Sintim,
  • Hamad H. Al Mamari,
  • Hasanain A. A. Almohseni,
  • Younes Fegheh-Hassanpour and
  • David M. Hodgson

Beilstein J. Org. Chem. 2019, 15, 1194–1202, doi:10.3762/bjoc.15.116

Graphical Abstract
  • desilylation. Initial Lewis acids screened either failed to react (PdCl2(MeCN)2), or led to complex mixtures (BF3, YbOTf, TBSOTf). More encouragingly, both AlCl3 and FeCl3 were found to cleave the acetonide 19a at rt, with the TBDPS group only being partially lost (≈15%) in both cases. AlCl3 was observed to
  • group strategy led us to TES protection at both alcohols, on the basis that this group should be robust enough to withstand the enolate manipulation chemistry, that desilylation of the secondary TES ether during acetonide removal could be restored in the subsequent tertiary alcohol silylation step, that
  • selective 2° over 3° TES ether desilylation should be readily achievable using AcOH [14], and that the remaining tertiary TES ether should be potentially labile enough to be removed under typical transketalisation conditions (TFA/CH2Cl2/H2O (10:20:1), 40 °C, 48–68 h [14], cf, Scheme 1), thereby
PDF
Album
Supp Info
Full Research Paper
Published 31 May 2019

Synthesis of acylglycerol derivatives by mechanochemistry

  • Karen J. Ardila-Fierro,
  • Andrij Pich,
  • Marc Spehr,
  • José G. Hernández and
  • Carsten Bolm

Beilstein J. Org. Chem. 2019, 15, 811–817, doi:10.3762/bjoc.15.78

Graphical Abstract
  • by an aqueous work-up gave DAG 6a in only 31% yield, together with concomitant acyl migration of the corresponding sn-1,2-diacylglycerol 6a into sn-1,3-diacylglycerol 6a’. Therefore, the desilylation reaction was carried out by stirring 5a and BF3·CH3CN (Scheme 5a). Next, DAG 6a was reacted with 4
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2019

Synthesis of the polyketide section of seragamide A and related cyclodepsipeptides via Negishi cross coupling

  • Jan Hendrik Lang and
  • Thomas Lindel

Beilstein J. Org. Chem. 2019, 15, 577–583, doi:10.3762/bjoc.15.53

Graphical Abstract
  • product 30 carrying an 8-OPMP group was obtained from PMP-protected polyketide 28. The endgame of a total synthesis of seragamide A (2) will have to address the macrocyclisation, desilylation of the threonine moiety, and O-demethylation of the D-iodotyrosine unit of 31. In orienting reactions on small
  • scale, desilylation of 31 (TBAF) was a spot-to-spot conversion. Saponification of both the silylated and desilylated methyl esters with LiOH was possible, as long as very mild acidic conditions were applied on work-up. However, macrocyclisation of the TIPS-protected or the desilylated acid did not occur
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2019

Sigmatropic rearrangements of cyclopropenylcarbinol derivatives. Access to diversely substituted alkylidenecyclopropanes

  • Guillaume Ernouf,
  • Jean-Louis Brayer,
  • Christophe Meyer and
  • Janine Cossy

Beilstein J. Org. Chem. 2019, 15, 333–350, doi:10.3762/bjoc.15.29

Graphical Abstract
  • substitution at C3 [63]. As illustrated with the preparation of alcohol 60, the strategy relies on a sila-Morita–Baylis–Hillman reaction between cyclopropenylsilane 59 and 3-phenylpropanal catalyzed by electron-rich tris(2,4,6-trimethoxyphenyl)phosphine (TTMPP) [63]. After desilylation, cyclopropenylcarbinol
PDF
Album
Review
Published 05 Feb 2019

Synthesis of nonracemic hydroxyglutamic acids

  • Dorota G. Piotrowska,
  • Iwona E. Głowacka,
  • Andrzej E. Wróblewski and
  • Liwia Lubowiecka

Beilstein J. Org. Chem. 2019, 15, 236–255, doi:10.3762/bjoc.15.22

Graphical Abstract
  • nitrogen was protected as N-Boc to furnish (4R,5R)-47. Under basic conditions the pyrrolidin-2-one ring was cleaved to provide a five-carbon chain of the target molecule. The final steps included esterification, desilylation and selective oxidation of the hydroxymethyl group followed by esterification
PDF
Album
Review
Published 25 Jan 2019

Synthesis, biophysical properties, and RNase H activity of 6’-difluoro[4.3.0]bicyclo-DNA

  • Sibylle Frei,
  • Adam K. Katolik and
  • Christian J. Leumann

Beilstein J. Org. Chem. 2019, 15, 79–88, doi:10.3762/bjoc.15.9

Graphical Abstract
  • 2’-position in the reaction mechanism. Having attained nucleoside 6, the synthesis towards the building block for DNA-synthesis continued by subsequent desilylation of this derivative producing intermediate 7 (Scheme 2). DMTr-protection of compound 7 at the 5’-oxygen with in situ prepared DMTr-OTf
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

6’-Fluoro[4.3.0]bicyclo nucleic acid: synthesis, biophysical properties and molecular dynamics simulations

  • Sibylle Frei,
  • Andrei Istrate and
  • Christian J. Leumann

Beilstein J. Org. Chem. 2018, 14, 3088–3097, doi:10.3762/bjoc.14.288

Graphical Abstract
  • either by a NIS-mediated or Vorbrüggen nucleosidation yielded in both cases the β-tricyclic nucleoside as major anomer. Subsequent desilylation and cyclopropane ring opening of these tricyclic intermediates afforded the unsaturated 6’F-bc4,3 nucleosides. The successful incorporation of the corresponding
  • 6α/β were subjected to the next reaction step, where the simultaneous desilylation and cyclopropane ring opening to the bicyclic fluoroenone 7 occurred. HF-pyridine smoothly facilitated this conversion. At this stage the two anomers of fluoroenone 7 were separable. The configurational assignment of
  • -ROESY experiments (Supporting Information File 1). The gem-difluorinated tricyclic nucleoside 12β was then converted into the bicyclic fluoroenone 13 via desilylation and ring-enlargement by short exposure to HF-pyridine. During the following Luche reduction of derivative 13 the benzoyl protecting group
PDF
Album
Supp Info
Full Research Paper
Published 20 Dec 2018

Nucleofugal behavior of a β-shielded α-cyanovinyl carbanion

  • Rudolf Knorr and
  • Barbara Schmidt

Beilstein J. Org. Chem. 2018, 14, 3018–3024, doi:10.3762/bjoc.14.281

Graphical Abstract
  • fission may also be used to generate different metal derivatives of the nucleofugal anions as equilibrium components. Fluoride-catalyzed, metal-free desilylation admitted carbonyl addition but blocked the retro-addition. Keywords: alkoxide fission; desilylation; fragmentation; retro-addition; reversible
  • compounds: Generated through desilylation of 24 (Scheme 6) by tetrabutylammonium fluoride (Bu4N+F−; ≤0.05 equiv), the ion pair 25 was trapped by pivalaldehyde (4) with formation of 7 along with a comparable amount of the alkene 1. However, the primary alkoxide product, as formed by 25 and 4, was supposedly
  • desilylation with Bu4N+ F−.
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2018
Graphical Abstract
  • Information File 2) of the 3,5-dinitrobenzoate derivative 13, mp 171–172 °C, prepared in two steps (51%) from the metathesis product on reaction with 3,5-dinitrobenzoyl chloride (DNBC) followed by acid-induced desilylation. Thus compound 7b on metathesis produced exclusively triene 11 and accordingly the
  • retigeranic acids, the norbornene derivative 16 was chosen. Addition of lithium (trimethylsilyl)acetylide to the lactol 5 followed by desilylation by using methanolic K2CO3 afforded diol 15 (Scheme 4). The primary hydroxy group in compound 15 was selectively protected to produce the silyl ether 16 in 95
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2018

Stereoselective total synthesis and structural revision of the diacetylenic diol natural products strongylodiols H and I

  • Pamarthi Gangadhar,
  • Sayini Ramakrishna,
  • Ponneri Venkateswarlu and
  • Pabbaraja Srihari

Beilstein J. Org. Chem. 2018, 14, 2313–2320, doi:10.3762/bjoc.14.206

Graphical Abstract
  • , respectively, followed by the desilylation (TBDPS removal) to yield the title products. The intermediate aldehyde 14 can be synthesized from ketone 17 in a four-step sequence by a stereoselective keto reduction, TBDPS protection, TBS deprotection and an oxidation reaction. The ketone 17 can be easily
  • to Wittig olefination reaction with triphenylphosphonium salt of n-nonyl bromide 15 in presence of n-BuLi to produce the corresponding Z-olefin 28 exclusively in 83% yield. Di-desilylation of compound 28 was easily achieved with n-tetrabutylammonium fluoride to furnish the target molecule
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2018

Synthesis of spirocyclic scaffolds using hypervalent iodine reagents

  • Fateh V. Singh,
  • Priyanka B. Kole,
  • Saeesh R. Mangaonkar and
  • Samata E. Shetgaonkar

Beilstein J. Org. Chem. 2018, 14, 1778–1805, doi:10.3762/bjoc.14.152

Graphical Abstract
  • discorhabdin A (112). In 2006, Honda and co-workers [115] reported the total synthesis of spiro-isoquinoline alkaloid (±)-annosqualine (1). In this report, the substrate 113 was cyclized to form spirocyclic compound 114 via desilylation with TBAF in THF followed by reaction with n-BuLi in hexafluoroisopropanol
PDF
Album
Review
Published 17 Jul 2018

Three-component coupling of aryl iodides, allenes, and aldehydes catalyzed by a Co/Cr-hybrid catalyst

  • Kimihiro Komeyama,
  • Shunsuke Sakiyama,
  • Kento Iwashita,
  • Itaru Osaka and
  • Ken Takaki

Beilstein J. Org. Chem. 2018, 14, 1413–1420, doi:10.3762/bjoc.14.118

Graphical Abstract
  • give the chromium alkoxide L [24]. Finally, the Cr–O bond is cleaved by TMSCl, generating the active chromium salt for the transmetalation and the silyl ether M, the desilylation of which with a fluoride anion results in the formation of a homoallylic alcohol 4. Conclusion The cobalt/chromium-catalyzed
PDF
Album
Supp Info
Full Research Paper
Published 11 Jun 2018

Mechanochemistry of nucleosides, nucleotides and related materials

  • Olga Eguaogie,
  • Joseph S. Vyle,
  • Patrick F. Conlon,
  • Manuela A. Gîlea and
  • Yipei Liang

Beilstein J. Org. Chem. 2018, 14, 955–970, doi:10.3762/bjoc.14.81

Graphical Abstract
  • were found to be relatively stable under anhydrous conditions and could be readily prepared via Michaelis–Arbusov (M–A) chemistry (Scheme 15) [23][56]. Transfer of crude M–A reaction mixtures to a zirconia ball mill vessel and removal of volatiles enabled the concomitant partial hydrolytic desilylation
  • MBM. Synthesis of pyrophosphorothiolate-linked dinucleoside cap analogues in a MBM to effect hydrolytic desilylation and phosphate coupling. Co-crystal grinding of alkylated nucleobases in an amalgam mill (N.B. no frequency was recorded in the experimental description). Preparation of DNA-SWNT complex
PDF
Album
Review
Published 27 Apr 2018

Aminosugar-based immunomodulator lipid A: synthetic approaches

  • Alla Zamyatina

Beilstein J. Org. Chem. 2018, 14, 25–53, doi:10.3762/bjoc.14.3

Graphical Abstract
PDF
Album
Review
Published 04 Jan 2018
Graphical Abstract
  • 1 and 2 were obtained by epimerization at C9. Mixtures of the isomers of 1 were formed in TBAF desilylation of Cinchona 4-TMS-triazole derivatives. Partial isomerisation of 2a into 2b was performed by transient deprotonation using in situ generated sodium methylsulfinylmethylide (Scheme 1). Both
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2017

Asymmetric synthesis of propargylamines as amino acid surrogates in peptidomimetics

  • Matthias Wünsch,
  • David Schröder,
  • Tanja Fröhr,
  • Lisa Teichmann,
  • Sebastian Hedwig,
  • Nils Janson,
  • Clara Belu,
  • Jasmin Simon,
  • Shari Heidemeyer,
  • Philipp Holtkamp,
  • Jens Rudlof,
  • Lennard Klemme,
  • Alessa Hinzmann,
  • Beate Neumann,
  • Hans-Georg Stammler and
  • Norbert Sewald

Beilstein J. Org. Chem. 2017, 13, 2428–2441, doi:10.3762/bjoc.13.240

Graphical Abstract
  • groups is accessible for the use as precursors of peptidomimetics. Keywords: amino acid analogous side chains; desilylation; Ellman’s chiral sulfinamide; intramolecular Huisgen reaction; peptidomimetics; propargylamines; rearrangement to α,β-unsaturated imines; Introduction Terminal alkynes display an
  • assume that strong bases do not only lead to desilylation, but also induce decomposition of the propargylamine system (see below). Kracker et al. recently demonstrated the substitution of the labile tert-butylsulfinyl group of compounds 7a–c by the more versatile Boc protective group in yields of 56–94
  • imine 5h) after desilylation with TBAF (Table 2). As the benzylic proton of sulfinylimine 5h is quite acidic, approach II was not pursued for the synthesis of propargylamines analogous to tyrosine, histidine, tryptophan, and aspartate. Proteinogenic amino acids do not contain substituents, which
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2017

Conjugated nitrosoalkenes as Michael acceptors in carbon–carbon bond forming reactions: a review and perspective

  • Yaroslav D. Boyko,
  • Valentin S. Dorokhov,
  • Alexey Yu. Sukhorukov and
  • Sema L. Ioffe

Beilstein J. Org. Chem. 2017, 13, 2214–2234, doi:10.3762/bjoc.13.220

Graphical Abstract
  • reaction with trimethylsilylcyanide in the presence of triethylamine as catalyst (Scheme 32) [81]. Interestingly, the initial addition products are intercepted by TMSCN forming stable TMS ethers of α-cyanooximes 87, which can be isolated by vacuum distillation. Mild desilylation of 87 initiates the
PDF
Album
Review
Published 23 Oct 2017

A novel application of 2-silylated 1,3-dithiolanes for the synthesis of aryl/hetaryl-substituted ethenes and dibenzofulvenes

  • Grzegorz Mlostoń,
  • Paulina Pipiak,
  • Róża Hamera-Fałdyga and
  • Heinz Heimgartner

Beilstein J. Org. Chem. 2017, 13, 1900–1906, doi:10.3762/bjoc.13.185

Graphical Abstract
  • + 2]-cycloadduct 8, which only at ca. −40 °C extruded N2 [23]. The goal of the present study was the preparation of a series of 2-trimethylsilyl-1,3-dithiolanes of type 6, which, after desilylation, should be applied for nucleophilic additions of the 1,3-dithiolane anion with some electrophilic agents
  • the reagents in a ratio of 3:1. Under these conditions, 1,3-dithiolane 6a was formed almost exclusively with only traces of 1,4-dithiane 7 as revealed by 1H NMR analysis of the crude reaction mixture. Desilylation of 6a occurred quantitatively and the known tetraphenylethylene (9a) [26] was obtained
  • desilylation conditions differs significantly from that of 4,5-unsubstituted 1,3-dithiolane 13c (Scheme 5). In the latter case, the desilylation leads to the corresponding carbanion, which can be trapped with an aldehyde to give 14 [24][25]. In contrast, the carbanion 11 undergoes a spontaneous cycloreversion
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2017

Effect of uridine protecting groups on the diastereoselectivity of uridine-derived aldehyde 5’-alkynylation

  • Raja Ben Othman,
  • Mickaël J. Fer,
  • Laurent Le Corre,
  • Sandrine Calvet-Vitale and
  • Christine Gravier-Pelletier

Beilstein J. Org. Chem. 2017, 13, 1533–1541, doi:10.3762/bjoc.13.153

Graphical Abstract
  • these compounds and notably reported that TES was better than TMS for efficient separation of both isomers, resulting in an improved 42% yield for the isolated major diastereomer (5’R)-11ab [12]. Then, subsequent acidic hydrolysis afforded (5’R)-16 and (5’S)-16 and alkyne desilylation under basic
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2017

Synthesis of oligonucleotides on a soluble support

  • Harri Lönnberg

Beilstein J. Org. Chem. 2017, 13, 1368–1387, doi:10.3762/bjoc.13.134

Graphical Abstract
  • . With 15–21-mer oligomers, some support-bound material, however, remained in solution and was recovered by adsorption to C18-coated silica gel. The cycle was completed by detritylation with DCA (3%) in DCM. Cleavage and deprotection was conventional: ammonolysis in aqueous EtOH, followed by desilylation
PDF
Album
Review
Published 12 Jul 2017

Total synthesis of elansolids B1 and B2

  • Liang-Liang Wang and
  • Andreas Kirschning

Beilstein J. Org. Chem. 2017, 13, 1280–1287, doi:10.3762/bjoc.13.124

Graphical Abstract
  • desired (Z,E,Z)-configured triene 19. Again, we did not encounter formation of stereoisomers in the triene unit. The configuration of the triene was unequivocally assigned by analysis of coupling constants (J) and by measuring nuclear Overhauser effects (nOe). Finally, desilylation and global
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2017
Other Beilstein-Institut Open Science Activities