Search results

Search for "carboxamide" in Full Text gives 111 result(s) in Beilstein Journal of Organic Chemistry.

Synthesis of 5-unsubstituted dihydropyrimidinone-4-carboxylates from deep eutectic mixtures

  • Sangram Gore,
  • Sundarababu Baskaran and
  • Burkhard König

Beilstein J. Org. Chem. 2022, 18, 331–336, doi:10.3762/bjoc.18.37

Graphical Abstract
  • raltegravir, the first HIV-integrase inhibitor approved by the FDA for the treatment of HIV infection, derived from 5,6-dihydroxypyrimidine-4-carboxamide and N-methyl-4-hydroxypyrimidinone-carboxamide [18] and hydroxypyrimidinone carboxamide derivative P01, a potent inhibitor of Mycobacterium tuberculosis
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2022

The ethoxycarbonyl group as both activating and protective group in N-acyl-Pictet–Spengler reactions using methoxystyrenes. A short approach to racemic 1-benzyltetrahydroisoquinoline alkaloids

  • Marco Keller,
  • Karl Sauvageot-Witzku,
  • Franz Geisslinger,
  • Nicole Urban,
  • Michael Schaefer,
  • Karin Bartel and
  • Franz Bracher

Beilstein J. Org. Chem. 2021, 17, 2716–2725, doi:10.3762/bjoc.17.183

Graphical Abstract
  • highly electrophilic N-acyliminium intermediates [17]. As a special aspect, we used a carbamate unit (instead of the commonly used carboxamide), ending up with 1-benzyl-1,2,3,4-tetrahydroisoquinolines bearing an N-ethoxycarbonyl residue, which in turn was easily converted directly into an N-methyl group
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2021

Isolation and characterization of new phenolic siderophores with antimicrobial properties from Pseudomonas sp. UIAU-6B

  • Emmanuel T. Oluwabusola,
  • Olusoji O. Adebisi,
  • Fernando Reyes,
  • Kojo S. Acquah,
  • Mercedes De La Cruz,
  • Larry L. Mweetwa,
  • Joy E. Rajakulendran,
  • Digby F. Warner,
  • Deng Hai,
  • Rainer Ebel and
  • Marcel Jaspars

Beilstein J. Org. Chem. 2021, 17, 2390–2398, doi:10.3762/bjoc.17.156

Graphical Abstract
  • presence of an oxazoline ring similar to that found in vulnibactin [27]. The key HMBC cross-peaks (Figure 2 and Supporting Information File 1) from H-9 (δH 4.46, J = 7.3 Hz, d) and H-11(δH 4.90, qd, J = 6.3, 7.3 Hz) to carboxamide C-10 (δC 175.6) and C-7 (δC 167.8), confirmed the proposed structure which
  • carboxamide C-10 (δC 172.9) and the quaternary carbon C-16 (δC 140.2), between H2-15 and H-18/20 to the quaternary carbon C-16, and a strong correlation from H-15 and H-19 to C-17/20 (δC 129.9). The new oxazoline derivative 5 was named pseudomonbactin B. The absolute configuration of the threonine residue in
PDF
Album
Supp Info
Full Research Paper
Published 13 Sep 2021

Regioselective N-alkylation of the 1H-indazole scaffold; ring substituent and N-alkylating reagent effects on regioisomeric distribution

  • Ryan M. Alam and
  • John J. Keating

Beilstein J. Org. Chem. 2021, 17, 1939–1951, doi:10.3762/bjoc.17.127

Graphical Abstract
  • observed > 99% N-1 regioselectivity for 3-carboxymethyl, 3-tert-butyl, 3-COMe, and 3-carboxamide indazoles. Further extension of this optimized (NaH in THF) protocol to various C-3, -4, -5, -6, and -7 substituted indazoles has highlighted the impact of steric and electronic effects on N-1/N-2 regioisomeric
PDF
Album
Supp Info
Full Research Paper
Published 02 Aug 2021

Development of N-F fluorinating agents and their fluorinations: Historical perspective

  • Teruo Umemoto,
  • Yuhao Yang and
  • Gerald B. Hammond

Beilstein J. Org. Chem. 2021, 17, 1752–1813, doi:10.3762/bjoc.17.123

Graphical Abstract
  • ] In 1996, the Banks group reported perfluoro[N-fluoro-N-(4-pyridyl)acetamide] (21-3) as a carboxamide analogue of perfluoro[N-fluoro-N-(4-pyridyl)methanesulfonamide] (11-2, see section 1-11) [82]. Its precursor, 21-2, was prepared from pentafluoropyridine by either one of two methods (Scheme 46
  • ). Precursor 21-2 was treated with neat F2 at 10–20 mmHg pressure in acetonitrile at −35 °C to produce the N-F carboxamide 21-3 in 75% yield but the resulting product was a 79:18 mixture of the desired N-F product 21-3 and the protonated compound 21-1. As a reagent N-F carboxamide 21-2 fluorinated electron
  • -rich substrates such as sodium diethyl (phenyl)malonate, 1-morpholinocyclohexene, phenol, and anisole (Scheme 47). The fluorination power of the carboxamide 21-2 was less than that of its N-F sulfonamide analog 11-2. 1-22. N,N’-Difluoro-1,4-diazoniabicyclo[2.2.2]octane salts In 1996, Umemoto and co
PDF
Album
Review
Published 27 Jul 2021

19F NMR as a tool in chemical biology

  • Diana Gimenez,
  • Aoife Phelan,
  • Cormac D. Murphy and
  • Steven L. Cobb

Beilstein J. Org. Chem. 2021, 17, 293–318, doi:10.3762/bjoc.17.28

Graphical Abstract
PDF
Album
Review
Published 28 Jan 2021

Novel library synthesis of 3,4-disubstituted pyridin-2(1H)-ones via cleavage of pyridine-2-oxy-7-azabenzotriazole ethers under ionic hydrogenation conditions at room temperature

  • Romain Pierre,
  • Anne Brethon,
  • Sylvain A. Jacques,
  • Aurélie Blond,
  • Sandrine Chambon,
  • Sandrine Talano,
  • Catherine Raffin,
  • Branislav Musicki,
  • Claire Bouix-Peter,
  • Loic Tomas,
  • Gilles Ouvry,
  • Rémy Morgentin,
  • Laurent F. Hennequin and
  • Craig S. Harris

Beilstein J. Org. Chem. 2021, 17, 156–165, doi:10.3762/bjoc.17.16

Graphical Abstract
  • , 60, Avenue Rockefeller, Bioparc, Bioserra 1 Building, 69008 Lyon, France 10.3762/bjoc.17.16 Abstract In our hands, efficient access to the 4-amino-3-carboxamide disubstituted pyridine-2(1H)-one kinase hinge-binder motif proved to be more challenging than anticipated requiring a significant
  • -azabenzotriazole; hinge-binder; ionic hydrogenation; library; pyridine-2(1H)-one; Introduction During a recent medicinal chemistry program targeting a kinase to treat skin disorders, we identified the 4-amino-3-carboxamide disubstituted pyridine-2(1H)-one motif (1) as an interesting starting point. Recently, both
  • affording only acceptable yields of pyridine intermediate (9a–c) with the major byproduct arising from the dechlorination of 8. Application of the same conditions with aromatic amides at C-3 (8d,e) failed with only trace quantities of final product observed. We speculated that the aromatic carboxamide NH
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2021

Three-component reactions of aromatic amines, 1,3-dicarbonyl compounds, and α-bromoacetaldehyde acetal to access N-(hetero)aryl-4,5-unsubstituted pyrroles

  • Wenbo Huang,
  • Kaimei Wang,
  • Ping Liu,
  • Minghao Li,
  • Shaoyong Ke and
  • Yanlong Gu

Beilstein J. Org. Chem. 2020, 16, 2920–2928, doi:10.3762/bjoc.16.241

Graphical Abstract
  • with aniline (1a) or amantadine in the presence of HATU or EDCI to form the multisubstituted pyrrole-3-carboxamide derivatives 4x and 4y (Scheme 4). These skeletons have been proven to be promising inhibitors for the production of cytokines [47]. A plausible mechanism for the model reaction was
  • . Direct synthesis of pyrrole-3-carboxamide derivatives. Plausible mechanism of the three-component reaction. Synthesis of polysubstituted pyrazolo[3,4-b]pyridine derivatives. Optimization of the conditions for the reaction between 1a, 2a, and 3a.a Supporting Information Supporting Information File 500
PDF
Album
Supp Info
Letter
Published 30 Nov 2020

Three new O-isocrotonyl-3-hydroxybutyric acid congeners produced by a sea anemone-derived marine bacterium of the genus Vibrio

  • Dandan Li,
  • Enjuro Harunari,
  • Tao Zhou,
  • Naoya Oku and
  • Yasuhiro Igarashi

Beilstein J. Org. Chem. 2020, 16, 1869–1874, doi:10.3762/bjoc.16.154

Graphical Abstract
  • three deshielded resonances (H3, H2', and H3') and a pair of mutually coupled doublet-of-doublets resonances (H22), indicating a shared core structure (Table 1, Table 2, and Supporting Information File 1). In fact, the 13C NMR spectra all had signals in common: two carboxy (carboxamide) and two olefinic
PDF
Album
Supp Info
Full Research Paper
Published 29 Jul 2020

Anthelmintic drug discovery: target identification, screening methods and the role of open science

  • Frederick A. Partridge,
  • Ruth Forman,
  • Carole J. R. Bataille,
  • Graham M. Wynne,
  • Marina Nick,
  • Angela J. Russell,
  • Kathryn J. Else and
  • David B. Sattelle

Beilstein J. Org. Chem. 2020, 16, 1203–1224, doi:10.3762/bjoc.16.105

Graphical Abstract
  • . mansoni [161]) and the cestode E. multilocularis [162]. Perhaps the most promising lead from the Pathogen Box so far is tolfenpyrad, a pyrazole-5-carboxamide insecticide, which was first identified as an anthelmintic with activity against exsheathed L3 and L4 parasitic life stages of Haemonchus contortus
  • follow-up study identified two additional pyrazole-5-carboxamide compounds with activity against H. contortus, although not improving on the potency of tolfenpyrad [166]. Tolfenpyrad acts in arthropods as an inhibitor of mitochondrial complex I [167]. It will be interesting if a tolfenpyrad derivative
  • through systematic alteration of the pyrazole-5-carboxamide and phenoxybenzyloxy moieties within tolfenpyrad 19 (Table 4). The systematic variation of the p-methylphenyl ring within 19 gave rise to a number of aromatic and heteroaromatic analogues with similar levels of potency to tolfenpyrad (Table 4
PDF
Album
Review
Published 02 Jun 2020

Fluorinated phenylalanines: synthesis and pharmaceutical applications

  • Laila F. Awad and
  • Mohammed Salah Ayoup

Beilstein J. Org. Chem. 2020, 16, 1022–1050, doi:10.3762/bjoc.16.91

Graphical Abstract
  • which was immediately hydrolyzed to provide the racemic carboxamide 172. The subsequent removal of the chiral auxiliary by catalytic hydrogenation then afforded the carboxamide 173. Finally, an acid-mediated hydrolysis of the carboxamide 173 to generate the free amino acids ʟ- or ᴅ-168a, was carried out
PDF
Album
Review
Published 15 May 2020

Copper-catalyzed remote C–H arylation of polycyclic aromatic hydrocarbons (PAHs)

  • Anping Luo,
  • Min Zhang,
  • Zhangyi Fu,
  • Jingbo Lan,
  • Di Wu and
  • Jingsong You

Beilstein J. Org. Chem. 2020, 16, 530–536, doi:10.3762/bjoc.16.49

Graphical Abstract
  • groups. Under standard conditions, the remote C–H arylation of other PAHs including phenanthrene-9-carboxamide, pyrene-1-carboxamide and fluoranthene-3-carboxamide has also accomplished, which provides an opportunity for the development of diverse organic optoelectronic materials. Keywords: C–H
  • -9-carboxamide, pyrene-1-carboxamide and fluoranthene-3-carboxamide, which provides an opportunity for the development of diverse organic photoelectrical materials. Results and Discussion Our investigation commenced with the reaction between N-(tert-butyl)-1-naphthamide (1a) and mesityl(phenyl
  • arylation of PAHs is challenging, and so far, there are no examples on the selective remote C–H arylation of phenanthrene-9-carboxamide, pyrene-1-carboxamide and fluoranthene-3-carboxamide. Gratifyingly, the remote C–H arylation of these PAH substrates occurred smoothly, giving the corresponding arylation
PDF
Album
Supp Info
Full Research Paper
Published 30 Mar 2020

Controlling alkyne reactivity by means of a copper-catalyzed radical reaction system for the synthesis of functionalized quaternary carbons

  • Goki Hirata,
  • Yu Yamane,
  • Naoya Tsubaki,
  • Reina Hara and
  • Takashi Nishikata

Beilstein J. Org. Chem. 2020, 16, 502–508, doi:10.3762/bjoc.16.45

Graphical Abstract
  • . Moreover, the reaction of α-bromocarbonyl compound 2 and an alkyne 4 possessing a carboxamide moiety undergoes tandem alkyl radical addition/C–H coupling to produce indolinone derivative 5. Keywords: copper catalyst; 1,3-enyne; functionalized quaternary carbon; indolinone; tandem alkyl radical addition
  • addition at a C–C triple bond followed by Sonogashira coupling to produce 1,3-enyne compounds. On the other hand, the reaction with alkyne possessing a carboxamide moiety underwent tandem alkyl radical addition at the C–C triple bond followed by C–H coupling to produce indolinone derivatives. These results
PDF
Album
Supp Info
Letter
Published 26 Mar 2020

p-Pyridinyl oxime carbamates: synthesis, DNA binding, DNA photocleaving activity and theoretical photodegradation studies

  • Panagiotis S. Gritzapis,
  • Panayiotis C. Varras,
  • Nikolaos-Panagiotis Andreou,
  • Katerina R. Katsani,
  • Konstantinos Dafnopoulos,
  • George Psomas,
  • Zisis V. Peitsinis,
  • Alexandros E. Koumbis and
  • Konstantina C. Fylaktakidou

Beilstein J. Org. Chem. 2020, 16, 337–350, doi:10.3762/bjoc.16.33

Graphical Abstract
  • )-one [29] derivatives, various enediyne [30][31][32], proflavine [33], N-nitroso carboxamide [34], naphazoline [35] and triazole [36] derivatives, azido carbonyl compounds [37] and N,O-diacyl-4-benzoyl-N-phenylhydroxylamines [38]. O-Acyl amidoximes, ketoximes and aldoximes (I, II and III, respectively
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2020

Microwave-assisted synthesis of 2-substituted 4,5,6,7-tetrahydro-1,3-thiazepines from 4-aminobutanol

  • María C. Mollo,
  • Natalia B. Kilimciler,
  • Juan A. Bisceglia and
  • Liliana R. Orelli

Beilstein J. Org. Chem. 2020, 16, 32–38, doi:10.3762/bjoc.16.5

Graphical Abstract
  • of the corresponding tetrahydro-1,3-oxazepines. This unexpected reaction path is reasonable considering the relative ease of formation of five-membered rings as compared to the isomeric seven-membered heterocycles together with the relatively poor nucleophilicity of the carboxamide oxygen. An
  • alcohols. In both cases, PPSE would activate the OH group for nucleophilic attack, and the plausible reaction mechanism would involve an intramolecular SN2-type displacement. However, the lower reactivity of the carboxamide oxygen (as an O-nucleophile), together with the comparatively high activation
  • energy associated to the formation of a seven-membered heterocycle would favour the competitive ring closure leading to the five-membered ring (Scheme 2, reaction a), which would involve attack of the carboxamide nitrogen to the ω-carbon. On the other hand, the higher nucleophilicity of the sulfur in the
PDF
Album
Supp Info
Full Research Paper
Published 06 Jan 2020

AgNTf2-catalyzed formal [3 + 2] cycloaddition of ynamides with unprotected isoxazol-5-amines: efficient access to functionalized 5-amino-1H-pyrrole-3-carboxamide derivatives

  • Ziping Cao,
  • Jiekun Zhu,
  • Li Liu,
  • Yuanling Pang,
  • Laijin Tian,
  • Xuejun Sun and
  • Xin Meng

Beilstein J. Org. Chem. 2019, 15, 2623–2630, doi:10.3762/bjoc.15.255

Graphical Abstract
  • Analysis, Qufu 273165, P. R. China 10.3762/bjoc.15.255 Abstract A formal [3 + 2] cycloaddition between ynamides and unprotected isoxazol-5-amines has been developed in the presence of catalytic AgNTf2 in an open flask. By the protocol, a variety of functionalized 5-amino-1H-pyrrole-3-carboxamide
  • derivatives can be obtained in up to 99% yield. The reaction mechanism might involve the generation of an unusual α-imino silver carbene intermediate (or a silver-stabilized carbocation) and subsequent cyclization/isomerization to build the significant pyrrole-3-carboxamide motif. The reaction features the
  • carbene and subsequent cyclization to pyrroles (Scheme 2b). Herein we want to provide some detailed results on the reaction (Scheme 2b), leading to the synthesis of a variety of functionalized 5-amino-1H-pyrrole-3-carboxamide derivatives in high yields. The reaction features the use of an inexpensive
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2019

Synthesis of novel sulfide-based cyclic peptidomimetic analogues to solonamides

  • José Brango-Vanegas,
  • Luan A. Martinho,
  • Lucinda J. Bessa,
  • Andreanne G. Vasconcelos,
  • Alexandra Plácido,
  • Alex L. Pereira,
  • José R. S. A. Leite and
  • Angelo H. L. Machado

Beilstein J. Org. Chem. 2019, 15, 2544–2551, doi:10.3762/bjoc.15.247

Graphical Abstract
  • ), as expected for the C-terminal carboxamide, we observed three ions derived from the breaking of two amide bonds, starting from the opening of the macrocycle by the loss of one, two or three amino acid residues as neutral fragments. This fragmentation pattern agrees with the one expected for cyclic
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2019

In search of visible-light photoresponsive peptide nucleic acids (PNAs) for reversible control of DNA hybridization

  • Lei Zhang,
  • Greta Linden and
  • Olalla Vázquez

Beilstein J. Org. Chem. 2019, 15, 2500–2508, doi:10.3762/bjoc.15.243

Graphical Abstract
  • base sensitive compounds, which undergo degradation under standard Fmoc deprotection conditions. As it is common for PNAs, our oligomers have an acetylated N-terminus and a C-terminal carboxamide group. After completion of the PNA sequences, the orthogonally protected backbone module [2-(N-Alloc
PDF
Album
Supp Info
Letter
Published 22 Oct 2019

Combining the Ugi-azide multicomponent reaction and rhodium(III)-catalyzed annulation for the synthesis of tetrazole-isoquinolone/pyridone hybrids

  • Gerardo M. Ojeda,
  • Prabhat Ranjan,
  • Pavel Fedoseev,
  • Lisandra Amable,
  • Upendra K. Sharma,
  • Daniel G. Rivera and
  • Erik V. Van der Eycken

Beilstein J. Org. Chem. 2019, 15, 2447–2457, doi:10.3762/bjoc.15.237

Graphical Abstract
  • heterocyclic carboxamide moieties, while the N-alkyl substituent of the tetrazole ring also proved to show a wide substrate scope. Overall, the reaction sequence is easy to implement and does not require inert conditions. Based on the experimental results, we believe that not only the amido group but also the
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2019

Functionalization of 4-bromobenzo[c][2,7]naphthyridine via regioselective direct ring metalation. A novel approach to analogues of pyridoacridine alkaloids

  • Benedikt C. Melzer,
  • Alois Plodek and
  • Franz Bracher

Beilstein J. Org. Chem. 2019, 15, 2304–2310, doi:10.3762/bjoc.15.222

Graphical Abstract
  • added at C-5 of 4-chloro- (9a) and 4-fluorobenzo[c][2,7]naphthyridine (9b) as well as the 4-carboxamide 9c to give 5-substituted-5,6-dihydro derivatives, which were readily aromatized with manganese dioxide [13]. Further functionalization was performed by Stille cross coupling of a 4-chloro intermediate
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2019

Azologization and repurposing of a hetero-stilbene-based kinase inhibitor: towards the design of photoswitchable sirtuin inhibitors

  • Christoph W. Grathwol,
  • Nathalie Wössner,
  • Sören Swyter,
  • Adam C. Smith,
  • Enrico Tapavicza,
  • Robert K. Hofstetter,
  • Anja Bodtke,
  • Manfred Jung and
  • Andreas Link

Beilstein J. Org. Chem. 2019, 15, 2170–2183, doi:10.3762/bjoc.15.214

Graphical Abstract
  • selective Sirt1 inhibitor, passed phase II clinical trials as a disease-modifying therapeutic for Huntington’s disease (HD) and was acquainted by AOP Orphan Pharmaceuticals AG for phase III trials in 2017 [9][10]. Its structure comprises a carboxamide moiety, which mimics the amide group of the endogenous
  • benzoquinoline carboxamide isomers 8a and b formed by photocyclization and successive oxidation (Scheme 3). Furthermore, small amounts of cycloaddition products in two fractions were found, probably due to the high concentration of 2b in the irradiated solution. In contrast, 2f was remarkably stable to long-term
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2019

Characterization of two new degradation products of atorvastatin calcium formed upon treatment with strong acids

  • Jürgen Krauß,
  • Monika Klimt,
  • Markus Luber,
  • Peter Mayer and
  • Franz Bracher

Beilstein J. Org. Chem. 2019, 15, 2085–2091, doi:10.3762/bjoc.15.206

Graphical Abstract
  • concentrated sulfuric acid, lactonization/dehydration is accompanied by complete loss of the carboxanilide residue to give pyrrole 7. Complete one-step removal of carboxamide residues from aromatic rings has been observed before in investigations of fragmentations of protonated species in mass spectrometry [21
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2019

Doebner-type pyrazolopyridine carboxylic acids in an Ugi four-component reaction

  • Maryna V. Murlykina,
  • Oleksandr V. Kolomiets,
  • Maryna M. Kornet,
  • Yana I. Sakhno,
  • Sergey M. Desenko,
  • Victoriya V. Dyakonenko,
  • Svetlana V. Shishkina,
  • Oleksandr A. Brazhko,
  • Vladimir I. Musatov,
  • Alexander V. Tsygankov,
  • Erik V. Van der Eycken and
  • Valentyn A. Chebanov

Beilstein J. Org. Chem. 2019, 15, 1281–1288, doi:10.3762/bjoc.15.126

Graphical Abstract
  • -(4-chlorophenyl)-2-oxoethyl)-6-(4-methoxyphenyl)-3-methyl-N-p-tolyl-1H-pyrazolo[3,4-b]pyridine-4-carboxamide (11n) according to X-ray diffraction data. Non-hydrogen atoms are presented as thermal ellipsoids with 50% probability. An overview of heterocyclic acids used in the Ugi reaction. Synthesis of
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2019

Multicomponent reactions (MCRs): a useful access to the synthesis of benzo-fused γ-lactams

  • Edorta Martínez de Marigorta,
  • Jesús M. de Los Santos,
  • Ana M. Ochoa de Retana,
  • Javier Vicario and
  • Francisco Palacios

Beilstein J. Org. Chem. 2019, 15, 1065–1085, doi:10.3762/bjoc.15.104

Graphical Abstract
  • -component reaction, to afford isoindolinones 53 substituted with nitrile or carboxamide groups (Scheme 15, method A) [93]. Trimethylsilylcyanide (52), and benzyl-, alkyl- and allylamines 2 were reacted with 2-formylbenzoic acid (33) in the presence of OSU-6, a mesoporous silica performing as a green Lewis
  • acid catalyst for this transformation. At room temperature, the product of this environmentally friendly Strecker reaction is nitrile derivative 53 (R2 = CN, Scheme 15, method A), while at reflux carboxamide 53 (R2 = CONH2, Scheme 15, method A) is obtained. Notoriously, aromatic amines 2 did not work
  • heteroaromatic analogues of aldehyde 62, such as 2-bromonicotinaldehyde or 2-bromothiophene-3-carbaldehyde did not produce the desired product. On the other hand, 2-aminoquinoline-3-carboxamide also reacted under these conditions to produce the corresponding isoindoloquinazolinone analogue of 57. Some control
PDF
Album
Review
Published 08 May 2019

Novel (2-amino-4-arylimidazolyl)propanoic acids and pyrrolo[1,2-c]imidazoles via the domino reactions of 2-amino-4-arylimidazoles with carbonyl and methylene active compounds

  • Victoria V. Lipson,
  • Tetiana L. Pavlovska,
  • Nataliya V. Svetlichnaya,
  • Anna A. Poryvai,
  • Nikolay Yu. Gorobets,
  • Erik V. Van der Eycken,
  • Irina S. Konovalova,
  • Svetlana V. Shiskina,
  • Alexander V. Borisov,
  • Vladimir I. Musatov and
  • Alexander V. Mazepa

Beilstein J. Org. Chem. 2019, 15, 1032–1045, doi:10.3762/bjoc.15.101

Graphical Abstract
  • . are a source of alkaloids with core structures containing simultaneously pyrrole carboxamide and 2-aminoimidazole moieties such as the simple achiral compound oroidine (V) and spatially organized molecules in a complex manner with a large number of chiral centres like (−)-palau’amine (VI) [3
PDF
Album
Supp Info
Full Research Paper
Published 06 May 2019
Other Beilstein-Institut Open Science Activities