Search results

Search for "electrophile" in Full Text gives 297 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Acetaldehyde in the Enders triple cascade reaction via acetaldehyde dimethyl acetal

  • Alessandro Brusa,
  • Debora Iapadre,
  • Maria Edith Casacchia,
  • Alessio Carioscia,
  • Giuliana Giorgianni,
  • Giandomenico Magagnano,
  • Fabio Pesciaioli and
  • Armando Carlone

Beilstein J. Org. Chem. 2023, 19, 1243–1250, doi:10.3762/bjoc.19.92

Graphical Abstract
  • as a reagent has always been challenging. The low boiling point and high volatility pose a problem with its handling and safety. The small steric hindrance gives rise to a high reactivity both as an electrophile and as a pro-nucleophile, hampering chemoselectivity (further to side reactions such as
PDF
Album
Supp Info
Full Research Paper
Published 24 Aug 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
PDF
Album
Review
Published 28 Jul 2023
Graphical Abstract
  • performs as an H-bond donor towards the imidazoline nitrogen and the electrophile acts as H-bond acceptor from the OH group of the catalyst. These interactions rearrange the three molecules in a chiral pocket as shown by transition state 7, favoring stereoinduction in the products through C3
  • . Stereoselectivity in the products 10/11 was achieved by using the chiral spirocyclic phosphoric acid catalyst P3 which, through H-bonding interactions with the nucleophile and the electrophile, forces the nucleophile to approach the C=N plane from the Re face. In general, enantiocontrol with pyrroles was better
  • for the functionalization of the C3–H bond in indoles 9 in the presence of BINOL-derived chiral phosphoric acid P6 as the catalytic agent. They utilized trifluoromethyl ester-substituted N-unprotected imine 15 as the potential electrophile to install an aza-quaternary stereocenter in the C3 position
PDF
Album
Review
Published 28 Jun 2023

Synthesis of aliphatic nitriles from cyclobutanone oxime mediated by sulfuryl fluoride (SO2F2)

  • Xian-Lin Chen and
  • Hua-Li Qin

Beilstein J. Org. Chem. 2023, 19, 901–908, doi:10.3762/bjoc.19.68

Graphical Abstract
  • (SO2F2) [43], a kind of inexpensive (about 1 $/kg), abundant, and relatively inert electrophile and one of the major sulfur fluoride exchange (SuFEx) click chemistry reagents [44][45], has been successfully applied as an electrophile to react with hydroxy groups to generate fluorosulfonate esters, being
PDF
Album
Supp Info
Letter
Published 22 Jun 2023

First synthesis of acylated nitrocyclopropanes

  • Kento Iwai,
  • Rikiya Kamidate,
  • Khimiya Wada,
  • Haruyasu Asahara and
  • Nagatoshi Nishiwaki

Beilstein J. Org. Chem. 2023, 19, 892–900, doi:10.3762/bjoc.19.67

Graphical Abstract
  • through an intramolecular aza-Wittig reaction, yielding cyclopropane-fused 2-quinolones [2]. A nitro group not only activates substrates and stabilizes the α-anion as an electron-withdrawing group but also acts as a nucleophile, electrophile, and leaving group, exhibiting diverse reactivities [3]. For
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2023

Asymmetric tandem conjugate addition and reaction with carbocations on acylimidazole Michael acceptors

  • Brigita Mudráková,
  • Renata Marcia de Figueiredo,
  • Jean-Marc Campagne and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 881–888, doi:10.3762/bjoc.19.65

Graphical Abstract
  • excellent in asymmetric conjugate additions of dialkylzincs to acylimidazoles [25]. The initial reaction conditions were inspired by literature precedence on conjugate additions. As the first electrophile for trapping of the chiral enolate, we have used tropylium bistriflimide (Scheme 2). Following our
  • diastereoselectivity. The reaction was also carried out using 3.3 equiv of the electrophile added in one portion. The full conversion of the starting acylimidazole 1a was observed after 30 minutes (TLC monitoring), however, the diastereoselectivity remained low (Table 1, entry 6). Neither an increase nor decrease of
  • reaction was stirred for 2 h, while it was slowly warmed up to rt. Then, the electrophile in anhydrous CH2Cl2 (1.0 mL) together with DMEU (20.2–40.4 µL, 75–150 mol %, to achieve homogeneity of the reaction mixture) were added to the reaction mixture followed by stirring at rt for 0.5–1 h. The reaction was
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • . Short information on applications in total synthesis is also given. Keywords: asymmetric catalysis; conjugate addition; electrophile; enolate; tandem reaction; Introduction The formation of complex chiral molecules is a crucial task of organic synthesis that enables the synthesis of pharmaceuticals
  • structurally different Michael acceptors were successfully applied. Their work also included a 3 mmol scale-up (62%, 87% ee, dr >20:1) and various derivatizations of the Mannich products. Furthermore, they have also attempted a multi-electrophile cascade reaction, which harnesses the nucleophilic nature of the
PDF
Album
Review
Published 04 May 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • other π systems or can be intercepted by an electrophile. The introduction of a bridging heteroatom into the bicyclic scaffold can dramatically alter the reactivity (Figure 2c). Besides the apparent increase in the ring strain (vide supra), their potential propagation steps are more complex. After an
  • intercepted by an electrophile to generate the difunctionalized system. This methodology has been applied several times to strained bicyclic alkenes with a variety of electrophiles. In 2015, Hirano and Miura developed a Cu-catalyzed aminoboration of bicyclic alkenes 1 with bis(pinacolato)diboron (B2pin2) (53
  • –Fe(II) complex 82. Transmetalation with an organozinc produces 78a which can be trapped by an electrophile to generate the final product 79a. Cobalt-catalyzed reactions In 2014, the Yoshikai lab investigated the Co-catalyzed addition of arylzinc reagents 83 of norbornene derivatives 15 (Scheme 14
PDF
Album
Review
Published 24 Apr 2023

Computational studies of Brønsted acid-catalyzed transannular cycloadditions of cycloalkenone hydrazones

  • Manuel Pedrón,
  • Jana Sendra,
  • Irene Ginés,
  • Tomás Tejero,
  • Jose L. Vicario and
  • Pedro Merino

Beilstein J. Org. Chem. 2023, 19, 477–486, doi:10.3762/bjoc.19.37

Graphical Abstract
  • inversion of the reagents and whereas in the classical cycloadditions with azomethine imines, they act as a nucleophile (involving their HOMO, interacting with the LUMO of the alkene), in our case, the protonated hydrazone acts as an electrophile (involving their LUMO, interacting now with the HOMO of the
PDF
Album
Supp Info
Full Research Paper
Published 20 Apr 2023

Total synthesis of insect sex pheromones: recent improvements based on iron-mediated cross-coupling chemistry

  • Eric Gayon,
  • Guillaume Lefèvre,
  • Olivier Guerret,
  • Adrien Tintar and
  • Pablo Chourreu

Beilstein J. Org. Chem. 2023, 19, 158–166, doi:10.3762/bjoc.19.15

Graphical Abstract
  • introduction of the C7–C8 linkage by a key iron-mediated cross-coupling sequence between the suitable α,ω-difunctionalized Grignard reagent and 1-bromopenta-1,3-diene as the electrophile (Scheme 6) [32]. A classic drawback of the use of dienyl halides as coupling partners is their intrinsic thermal instability
PDF
Album
Perspective
Published 14 Feb 2023

Synthetic study toward tridachiapyrone B

  • Morgan Cormier,
  • Florian Hernvann and
  • Michaël De Paolis

Beilstein J. Org. Chem. 2022, 18, 1741–1748, doi:10.3762/bjoc.18.183

Graphical Abstract
  • deprotonation of 2-(α’-methoxy-γ-pyrone)-1,3-dithiane. The resulting vinylogous enolate intermediate was trapped with the electrophile 3, amounting to the one-pot preparation of compound 4, having a masked carbonyl function connecting both key fragments [27][28]. Isolated and characterized by Schmitz [17], the
  • temperature in contrast with the nucleophile 2-lithio-1,3-dithiane, and with acetic acid as electrophile (Scheme 3). Among the possible isomers that can be expected, a single one 6a’ was isolated in 49% yield after trituration, as it was found rather unstable on silica gel. While the addition of more reactive
  • yield was actually noted with (PhSe)2 as electrophile, 5 being obtained in 62% yield, enabling thus an evaluation of the next desymmetrization step. An overview of the scientific literature revealed that, while the asymmetric desymmetrization of prochiral 2,5-cyclohexadienones is a rich topic of
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2022

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • (Scheme 2). In the enamine type of catalysis (Scheme 2A) the key enamine intermediate can undergo one-electron oxidation (route 1), electrophilic radical attack (route 2), or electrophile attack (route 3). The one-electron oxidation leads to the electrophilic cation radical which can further undergo
  • electrophile and the nucleophile with the specific preorganization of the substrates by the catalyst is crucial for high enantioselectivity [67] (as in example A in Scheme 4). However, in example B the transition state without specific interactions between the sulfide and the catalyst is proposed. In this case
PDF
Album
Perspective
Published 09 Dec 2022

Functionalization of imidazole N-oxide: a recent discovery in organic transformations

  • Koustav Singha,
  • Imran Habib and
  • Mossaraf Hossain

Beilstein J. Org. Chem. 2022, 18, 1575–1588, doi:10.3762/bjoc.18.168

Graphical Abstract
  • to be a 1:1:1 ratio of 2-unsubstituted imidazole N-oxides as C-nucleophile, ethyl cyanoacetate as C–H acidic electrophile and 4-(methylsulfanyl)benzaldehyde as aldehyde catalyst, DMF as solvent at 100 °C for 5 h. Under the optimized conditions, malononitrile providing the products 4i,j (36–45%), 2
PDF
Album
Review
Published 22 Nov 2022

Design, synthesis, and evaluation of chiral thiophosphorus acids as organocatalysts

  • Karen R. Winters and
  • Jean-Luc Montchamp

Beilstein J. Org. Chem. 2022, 18, 1471–1478, doi:10.3762/bjoc.18.154

Graphical Abstract
  • cross-coupling, and 2) immobilization on a solid support via reduction and reaction of the aniline with an electrophile such as polystyrene isocyanate. DOPO scaffold We previously reported the syntheses of both enantiomers of 8-phenyl DOPO 3 [38]. The syntheses proceed in only three steps (including the
PDF
Album
Supp Info
Full Research Paper
Published 17 Oct 2022

Oxa-Michael-initiated cascade reactions of levoglucosenone

  • Julian Klepp,
  • Thomas Bousfield,
  • Hugh Cummins,
  • Sarah V. A.-M. Legendre,
  • Jason E. Camp and
  • Ben W. Greatrex

Beilstein J. Org. Chem. 2022, 18, 1457–1462, doi:10.3762/bjoc.18.151

Graphical Abstract
  • derived from biomass pyrolysis, due to its reactive functionality, and the chirality which derives from glucose [4][5][6][7]. Reactions of 1 where the α,β-unsaturated ketone participates as an electrophile are usually completely diastereoselective, as the approach of the nucleophile is controlled by the
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2022

Synthesis of C6-modified mannose 1-phosphates and evaluation of derived sugar nucleotides against GDP-mannose dehydrogenase

  • Sanaz Ahmadipour,
  • Alice J. C. Wahart,
  • Jonathan P. Dolan,
  • Laura Beswick,
  • Chris S. Hawes,
  • Robert A. Field and
  • Gavin J. Miller

Beilstein J. Org. Chem. 2022, 18, 1379–1384, doi:10.3762/bjoc.18.142

Graphical Abstract
  • completed a selective anomeric deacetylation on a gram-scale using ammonium acetate in DMF, to afford hemi-acetal 15 in good yield (80%) [11]. This was followed by phosphorylation of the anomeric position using diphenylphosphoryl chloride as the phosphorous electrophile, following deprotonation of 15 using
PDF
Album
Supp Info
Letter
Published 30 Sep 2022

Ferrocenoyl-adenines: substituent effects on regioselective acylation

  • Mateja Toma,
  • Gabrijel Zubčić,
  • Jasmina Lapić,
  • Senka Djaković,
  • Davor Šakić and
  • Valerije Vrček

Beilstein J. Org. Chem. 2022, 18, 1270–1277, doi:10.3762/bjoc.18.133

Graphical Abstract
  • isomers) is governed by the steric property of the substituent at the N6-position. Steric effects were evaluated by using Charton (empirical) and Sterimol (computational) parameters. The bulky substituents may shield the proximal N7 region of space, which prevents the approach of an electrophile towards
  • approach of an electrophile (e.g., FcCOCl) towards the N7 atom. In the course of N9-isomer formation no similar steric hindrance is encountered. This is supported by our quantum-chemical calculations which compared the two transition state structures for the ferrocenoylation of the N6,N6-di-tert
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2022

Modular synthesis of 2-furyl carbinols from 3-benzyldimethylsilylfurfural platforms relying on oxygen-assisted C–Si bond functionalization

  • Sebastien Curpanen,
  • Per Reichert,
  • Gabriele Lupidi,
  • Giovanni Poli,
  • Julie Oble and
  • Alejandro Perez-Luna

Beilstein J. Org. Chem. 2022, 18, 1256–1263, doi:10.3762/bjoc.18.131

Graphical Abstract
  • from E, and thus affording the C3-lithiated furan derivative G upon 1,4-silyl migration as well as the electrophilic substitution product H in the presence of an appropriate electrophile (Scheme 3, bottom). However, treatment of aldehyde 1b with n-BuLi, followed by addition of benzaldehyde in THF/DMPU
  • ] (402 mg, 0.72 mmol) was then added along with the corresponding electrophile (3 equiv). The mixture was stirred for 2–3 min at rt and then cannulated into the vial containing the copper complex. The mixture was stirred for 2 h at 30 °C and then quenched with aq KOH (6 M, 1 mL). The mixture was
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2022

Vicinal ketoesters – key intermediates in the total synthesis of natural products

  • Marc Paul Beller and
  • Ulrich Koert

Beilstein J. Org. Chem. 2022, 18, 1236–1248, doi:10.3762/bjoc.18.129

Graphical Abstract
  • diesters and ester amides as key intermediates (+)-Awajanomycin Diethyl mesoxalate (90a) is a valuable building block due to the high density of carbon atoms in high oxidation states. As a vic-tricarbonyl compound, its central keto group is an especially potent electrophile. The Koert group used this
PDF
Album
Review
Published 15 Sep 2022

Morita–Baylis–Hillman reaction of 3-formyl-9H-pyrido[3,4-b]indoles and fluorescence studies of the products

  • Nisha Devi and
  • Virender Singh

Beilstein J. Org. Chem. 2022, 18, 926–934, doi:10.3762/bjoc.18.92

Graphical Abstract
  • medicinal importance is the reason that the synthesis of β-carboline-containing derivatives has been an exciting area for researchers [34][35][36][37][38][39][40]. The Morita–Baylis–Hillman (MBH) reaction is an astonishing C–C bond forming reaction between a carbonyl electrophile and an activated alkene
  • leading to the formation of allylic alcohol; a highly functionalized product [41][42][43][44]. The chemistry of the MBH reaction is decorated with several unique features viz. atom economy, complexity generation and generation of a chiral center from a pro-chiral electrophile. The chemistry of the MBH
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2022

Synthetic strategies for the preparation of γ-phostams: 1,2-azaphospholidine 2-oxides and 1,2-azaphospholine 2-oxides

  • Jiaxi Xu

Beilstein J. Org. Chem. 2022, 18, 889–915, doi:10.3762/bjoc.18.90

Graphical Abstract
  • intramolecular nucleophilic dearomatization and protonation or electrophilic alkylation reactions, affording the corresponding dihydronaphthylene-fused γ-phosphinolactams 135–142. Methanol was used as the electrophile for protonation, while methyl iodide and allyl bromide were used as electrophiles for
  • alkylation. A remarkable difference compared with the diphenylphosphinamides is the fact that the current reactions proceeded with excellent regio- and stereoselectivities and yields in THF without the use of the carcinogenic cosolvent HMPA (Scheme 24) [51]. With benzaldehyde as an electrophile, both
  • alkylated and protonated benzocyclohexadiene-fused γ-phosphinolactams 143 and 136a were generated in 25% and 15% yield, respectively. However, two pairs of alkylated and protonated benzocyclohexadiene-fused γ-phosphinolactams 144 and 145, 136a and 146 were obtained with 4-chlorobenzaldehyde as electrophile
PDF
Album
Review
Published 22 Jul 2022

Synthesis and HDAC inhibitory activity of pyrimidine-based hydroxamic acids

  • Virginija Jakubkiene,
  • Gabrielius Ernis Valiulis,
  • Markus Schweipert,
  • Asta Zubriene,
  • Daumantas Matulis,
  • Franz-Josef Meyer-Almes and
  • Sigitas Tumkevicius

Beilstein J. Org. Chem. 2022, 18, 837–844, doi:10.3762/bjoc.18.84

Graphical Abstract
  • the most successful with an overall reaction yield as high as 82% and a ratio of O- to N-isomers 24a to 24b as high as 3.3:1 (Table 1, entry 7). As expected, the polar aprotic solvent dimethylformamide promoted the reaction of the electrophile with the more negatively charged oxygen atom by well
PDF
Album
Supp Info
Full Research Paper
Published 13 Jul 2022

Comparative study of thermally activated delayed fluorescent properties of donor–acceptor and donor–acceptor–donor architectures based on phenoxazine and dibenzo[a,j]phenazine

  • Saika Izumi,
  • Prasannamani Govindharaj,
  • Anna Drewniak,
  • Paola Zimmermann Crocomo,
  • Satoshi Minakata,
  • Leonardo Evaristo de Sousa,
  • Piotr de Silva,
  • Przemyslaw Data and
  • Youhei Takeda

Beilstein J. Org. Chem. 2022, 18, 459–468, doi:10.3762/bjoc.18.48

Graphical Abstract
  • the designed D–A molecule 1, an asymmetric dibenzophenazine electrophile was required. Recently, we have established a synthetic method for such a compound, i.e., 3-trifluoromethanesulfonyldibenzo[a,j]phenazine (DBPHZ-OTf in Scheme 1) to prepare linear-type A–D–A–D compounds [18]. Starting from the
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2022

Borylated norbornadiene derivatives: Synthesis and application in Pd-catalyzed Suzuki–Miyaura coupling reactions

  • Robin Schulte and
  • Heiko Ihmels

Beilstein J. Org. Chem. 2022, 18, 368–373, doi:10.3762/bjoc.18.41

Graphical Abstract
  • amide functionality [13][14][15][16][17][18][24][25]. At the same time, norbornadiene derivatives are available from metalated substrates. Hence, norbornadiene is deprotonated with the Schlosser base and subsequently trapped by an appropriate electrophile [26][27]. In addition, halogenated norbornadiene
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2022

Recent developments and trends in the iron- and cobalt-catalyzed Sonogashira reactions

  • Surendran Amrutha,
  • Sankaran Radhika and
  • Gopinathan Anilkumar

Beilstein J. Org. Chem. 2022, 18, 262–285, doi:10.3762/bjoc.18.31

Graphical Abstract
  • with an electrophile results in the formation of a cobalt(III) intermediate. Subsequent homolytic cleavage and generation of cobalt(II) complex C and radical D the radical undergoes addition to phenylacetylene to provide cobalt(III) intermediate E. The targeted compound 1-methyl-4-(2-phenylethynyl
PDF
Album
Review
Published 03 Mar 2022
Other Beilstein-Institut Open Science Activities