Search results

Search for "crystal structure" in Full Text gives 571 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Synthesis, structural characterization, and optical properties of benzo[f]naphtho[2,3-b]phosphoindoles

  • Mio Matsumura,
  • Takahiro Teramoto,
  • Masato Kawakubo,
  • Masatoshi Kawahata,
  • Yuki Murata,
  • Kentaro Yamaguchi,
  • Masanobu Uchiyama and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2021, 17, 671–677, doi:10.3762/bjoc.17.56

Graphical Abstract
  • isomers, in which the position of the fused benzene rings is different; of these, three are shown in Figure 1. The synthesis, crystal structure, and dynamic behavior of benzo[e]naphtho[2,1-b]phosphindole (A) with the C2 symmetry axis on the binaphthyl skeleton have been reported [9][10][11]. Synthetic
  • of the phosphorus atom. X-ray crystal analysis showed that the parent trivalent phosphole has a considerably planar benzonaphthophosphoindole skeleton in its crystal structure. 1H and 13C NMR observations revealed that all the phospholes obtained in this study had a highly symmetric structure in
  • functional π-electron materials for organic electronics applications is under progress, and the results will be reported in due time. Benzonaphthophosphindoles. Crystal structure of 2: different views. a) Absorption spectra and b) normalized fluorescence spectra for selected compounds in CHCl3. The spatial
PDF
Album
Supp Info
Letter
Published 05 Mar 2021

Amino- and polyaminophthalazin-1(2H)-ones: synthesis, coordination properties, and biological activity

  • Zbigniew Malinowski,
  • Emilia Fornal,
  • Agata Sumara,
  • Renata Kontek,
  • Karol Bukowski,
  • Beata Pasternak,
  • Dariusz Sroczyński,
  • Joachim Kusz,
  • Magdalena Małecka and
  • Monika Nowak

Beilstein J. Org. Chem. 2021, 17, 558–568, doi:10.3762/bjoc.17.50

Graphical Abstract
  • and 424.3 Da for 65Cu followed the same fragmentation pattern for both ions. The proposal of the fragmentation pathway, based on the X-ray crystal structure of the Cu(II) complex with 7 (L3) (Figure 4, vide infra), is shown in Scheme 3. The MS/MS fragmentation analysis of the [(L3)Cu(II)Cl]+ complex 8
  • unit. Their geometry was fully optimized in vacuum using the DFT method with the crystal structure coordinates as the input geometry (optimized at the CAM-B3LYP/6–311++G(d,p)/LanL2DZ(Cu) level of theory). However, due to the convergence failure during the geometry optimization of the dimer of molecules
  • angles equal to 27.61 and 28.71°, respectively, and moreover, the methyl groups of the methoxy substituents are directed opposite and towards to the pyridin-2-yl substituents, respectively. The crystal structure of complex 17 is stabilized with a 3D intermolecular hydrogen bond network (Figure S1a
PDF
Album
Supp Info
Full Research Paper
Published 25 Feb 2021

Biochemistry of fluoroprolines: the prospect of making fluorine a bioelement

  • Vladimir Kubyshkin,
  • Rebecca Davis and
  • Nediljko Budisa

Beilstein J. Org. Chem. 2021, 17, 439–460, doi:10.3762/bjoc.17.40

Graphical Abstract
  • crystal structure of the protein (all residues were in the trans-amide conformation). The structure showed the R-Flp and S-Mep residues adopting exo- and endo-pucker conformations, respectively. This arrangement created a tight packing between the R-Flp and S-Mep side-chains, as shown in Figure 12B. The
  • -Flp. The protein containing R-Flp exhibited a slightly lowered stability compared to the parent enzyme. The crystal structure depicts R-Flp at 32 different positions (Figure 12C), including two proline residues forming cis-amide bonds (positions 300 and 579) and two oligoproline stretches (positions
  • 300–302 and 368–369). A defined pucker could be observed clearly in 28 out of 32 residues; 26 residues out of this set were in the exo-pucker conformation. In contrast, the crystal structure of the wild-type protein showed 18 residues adopting single pucker conformations, and only 7 from this set were
PDF
Album
Review
Published 15 Feb 2021

Mesoionic tetrazolium-5-aminides: Synthesis, molecular and crystal structures, UV–vis spectra, and DFT calculations

  • Vladislav A. Budevich,
  • Sergei V. Voitekhovich,
  • Alexander V. Zuraev,
  • Vadim E. Matulis,
  • Vitaly E. Matulis,
  • Alexander S. Lyakhov,
  • Ludmila S. Ivashkevich and
  • Oleg A. Ivashkevich

Beilstein J. Org. Chem. 2021, 17, 385–395, doi:10.3762/bjoc.17.34

Graphical Abstract
  • their complexation. In salt 9, the bromide ions are held in the crystal structure by hydrogen bonds N15–H15···Br1b [D···A = 3.2774(17) Å, D–H···A = 142°; symmetry code: (b) –x + y + 1/3, −x + 2/3, z + 2/3] and N25–H25···Br2 (D···A = 3.2654(17) Å, D–H···A = 144°). There are also intramolecular hydrogen
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2021

CF3-substituted carbocations: underexploited intermediates with great potential in modern synthetic chemistry

  • Anthony J. Fernandes,
  • Armen Panossian,
  • Bastien Michelet,
  • Agnès Martin-Mingot,
  • Frédéric R. Leroux and
  • Sébastien Thibaudeau

Beilstein J. Org. Chem. 2021, 17, 343–378, doi:10.3762/bjoc.17.32

Graphical Abstract
PDF
Album
Review
Published 03 Feb 2021

19F NMR as a tool in chemical biology

  • Diana Gimenez,
  • Aoife Phelan,
  • Cormac D. Murphy and
  • Steven L. Cobb

Beilstein J. Org. Chem. 2021, 17, 293–318, doi:10.3762/bjoc.17.28

Graphical Abstract
PDF
Album
Review
Published 28 Jan 2021
Graphical Abstract
  • emitters possessing a diphenyltriazine as the acceptor and different regiochemistry of the carbazole donors; the ΔESTs increased to 0.10 eV for 2,4-2CzTRZ and 0.29 eV for 3,4-2CzTRZ. The single crystal structure of 2,6-2CzTRZ revealed a highly twisted structure with large torsions (81.0o and 76.3o) between
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2021

Synthesis of tetrafluorinated piperidines from nitrones via a visible-light-promoted annelation reaction

  • Vyacheslav I. Supranovich,
  • Igor A. Dmitriev and
  • Alexander D. Dilman

Beilstein J. Org. Chem. 2020, 16, 3104–3108, doi:10.3762/bjoc.16.260

Graphical Abstract
  • experimental details, compound characterization, X-ray data, and copies of NMR spectra. Supporting Information File 507: Crystallographic information file for compound 3f. Supporting Information File 508: Crystallographic information file for compound 3h. Acknowledgements The crystal structure determination
PDF
Album
Supp Info
Letter
Published 29 Dec 2020

Naphthalonitriles featuring efficient emission in solution and in the solid state

  • Sidharth Thulaseedharan Nair Sailaja,
  • Iván Maisuls,
  • Jutta Kösters,
  • Alexander Hepp,
  • Andreas Faust,
  • Jens Voskuhl and
  • Cristian A. Strassert

Beilstein J. Org. Chem. 2020, 16, 2960–2970, doi:10.3762/bjoc.16.246

Graphical Abstract
  • -electron donating capability. Interestingly, upon aggregation in water-containing media, H, Me and t-Bu show a slight red-shift of the emission and a blue-shift is observed for OMe, SMe and NMe2. The crystal structure of Me allowed a detailed discussion of the structure–property relationship. Clearly, N
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2020

Construction of pillar[4]arene[1]quinone–1,10-dibromodecane pseudorotaxanes in solution and in the solid state

  • Xinru Sheng,
  • Errui Li and
  • Feihe Huang

Beilstein J. Org. Chem. 2020, 16, 2954–2959, doi:10.3762/bjoc.16.245

Graphical Abstract
  • crystallography revealed that two host molecules complex one guest molecule, forming a [3]pseudorotaxane in the solid state (Figure 1). In the crystal structure, the alkyl chain of the guest is threaded through the cavities of two host molecules, which is stabilized by multiple CH∙∙∙π interactions and hydrogen
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2020

Ultrasound-assisted Strecker synthesis of novel 2-(hetero)aryl-2-(arylamino)acetonitrile derivatives

  • Emese Gal,
  • Luiza Gaina,
  • Hermina Petkes,
  • Alexandra Pop,
  • Castelia Cristea,
  • Gabriel Barta,
  • Dan Cristian Vodnar and
  • Luminiţa Silaghi-Dumitrescu

Beilstein J. Org. Chem. 2020, 16, 2929–2936, doi:10.3762/bjoc.16.242

Graphical Abstract
  • are related to the possibility of controlling the crystal structure properties of the final product in nanomaterials syntheses [5]. For this reason, theoretical scientific research is currently directed towards the understanding of the physical phenomena involved in sonocrystallization mechanisms [6
  • angle of 64.5°. The intermolecular distances are situated in the range 2.3–2.6 Å disclosing the lack of intermolecular interactions in the crystal structure. Scanning electron microscopy (SEM) analysis Besides process intensification leading to a shorter reaction time, another advantage of the
  • diethyl ether. After evaporation of the organic solvent the solid product was collected and purified by recrystallization from a suitable solvent. Crystal structure of 2-phenothiazinyl-2-(p-tolylamino)acetonitrile 2a. a) ORTEP plot and b) crystallographic cell unit. SEM images recorded at 200× for the raw
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2020

Synthesis of purines and adenines containing the hexafluoroisopropyl group

  • Viacheslav Petrov,
  • Rebecca J. Dooley,
  • Alexander A. Marchione,
  • Elizabeth L. Diaz,
  • Brittany S. Clem and
  • William Marshall

Beilstein J. Org. Chem. 2020, 16, 2739–2748, doi:10.3762/bjoc.16.224

Graphical Abstract
  • of the material was confirmed by powder diffraction data and compared to simulated powder diffraction data from the single crystal diffraction experiment. The reaction conditions, mass spectrometry, and NMR data are given in Table 1 and Table 3. Crystal structure of 2a, with the thermal ellipsoids
  • drawn at 30% probability. Crystal structure of 7a, with the thermal ellipsoids drawn at 30% probability. Top: 19F NMR spectra of 3a acquired over a sample temperature range of 223–373 K. Left: Fitted plot of integrated intensity vs interpulse delay time from the experiment inverting the minor rotamer of
PDF
Album
Full Research Paper
Published 11 Nov 2020

Vicinal difluorination as a C=C surrogate: an analog of piperine with enhanced solubility, photostability, and acetylcholinesterase inhibitory activity

  • Yuvixza Lizarme-Salas,
  • Alexandra Daryl Ariawan,
  • Ranjala Ratnayake,
  • Hendrik Luesch,
  • Angela Finch and
  • Luke Hunter

Beilstein J. Org. Chem. 2020, 16, 2663–2670, doi:10.3762/bjoc.16.216

Graphical Abstract
  • populated in solution. A similar situation occurs for piperine itself; an indirect evidence for this comes from the crystal structure of 1 (Figure 1), where there is a second molecule in the unit cell (not shown) that has the alternative ring pucker [14]. The next-higher energy calculated structure of 2
  • twisted to a lesser degree in that case (8° away from planarity). It is interesting that in the crystal structure of piperine itself (1, Figure 1) [14], the amide bond is also twisted by 15° away from planarity. In this case the distortion might be attributable to a H···H clash (1.99 Å). Structure 2f
  • for this work; the crystal structure is shown [14]. In this work, a hypothetical analog 2 was designed to mimic parent compound 1. The predicted low-energy rotamers of 2 about the F–C–C–F and F–C–C=O bonds are shown; rotamers I and IV give the best mimicry of 1. Conformational analysis of 2 by DFT and
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2020

Thermodynamic and electrochemical study of tailor-made crown ethers for redox-switchable (pseudo)rotaxanes

  • Henrik Hupatz,
  • Marius Gaedke,
  • Hendrik V. Schröder,
  • Julia Beerhues,
  • Arto Valkonen,
  • Fabian Klautzsch,
  • Sebastian Müller,
  • Felix Witte,
  • Kari Rissanen,
  • Biprajit Sarkar and
  • Christoph A. Schalley

Beilstein J. Org. Chem. 2020, 16, 2576–2588, doi:10.3762/bjoc.16.209

Graphical Abstract
  • synthesized in moderate yields of 24% and 26%, respectively, over three steps from the same two building blocks, the ditosylate 5 and the monobutyl-protected NDI precursor 7 (Scheme 1). The connectivity and conformation of exTTFC7 was observed in the crystal structure obtained from crystals generated through
  • slow evaporation of a CH2Cl2/CH3CN solution. The structure of the exTTF unit does not exhibit any significant changes upon incorporation into the crown ether [48]. No intermolecular stacking between the exTTF units was observed in the crystal structure of exTTFC7 (Figure 2a and section 2 in Supporting
  • the experiment. The folded structure observed in the crystal structure hints towards a possible “side-on” complex, where the ammonium axle is not threading through the ring of the macrocycle, yet still forms hydrogen bonds to the crown ether [24][25] (see spectroelectrochemical measurements below
PDF
Album
Supp Info
Full Research Paper
Published 20 Oct 2020

Synthesis of novel fluorinated building blocks via halofluorination and related reactions

  • Attila Márió Remete,
  • Tamás T. Novák,
  • Melinda Nonn,
  • Matti Haukka,
  • Ferenc Fülöp and
  • Loránd Kiss

Beilstein J. Org. Chem. 2020, 16, 2562–2575, doi:10.3762/bjoc.16.208

Graphical Abstract
  • fine-tuning the reaction conditions of other halofluorination and fluoroselenation reactions are currently being studied in our research group. Crystal structure of (rac)-11b. Crystal structure of the product (rac)-15a. Crystal structure of the product (rac)-15b. Proposed outcome of the
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2020

Comparative ligand structural analytics illustrated on variably glycosylated MUC1 antigen–antibody binding

  • Christopher B. Barnett,
  • Tharindu Senapathi and
  • Kevin J. Naidoo

Beilstein J. Org. Chem. 2020, 16, 2540–2550, doi:10.3762/bjoc.16.206

Graphical Abstract
  • S6 in Supporting Information File 1). Movahedin et al. hypothesized that the glycan modulates the conformation of the peptide portion of the Tn-antigen and does not bind directly, noting that in the crystal structure GalNAc is positioned 4 Å away from the side chain of Tyr100, and indicating that any
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2020

NMR Spectroscopy of supramolecular chemistry on protein surfaces

  • Peter Bayer,
  • Anja Matena and
  • Christine Beuck

Beilstein J. Org. Chem. 2020, 16, 2505–2522, doi:10.3762/bjoc.16.203

Graphical Abstract
  • the number of methyl groups [29][49]. On the protein surface, both ligands showed a clear preference for the sterically most accessible dimethyl-lysine residue K34Me2 which is located in a solvent-accessible loop. Binding of cucurbit[7]uril to this residue was confirmed by the co-crystal structure of
  • isomerase hPin1 (original data) is shown as an example in Figure 3. On the regulatory N-domain of of the AAA+ ATPase p97 (p97-N), tweezers were found to bind only 6 patches even though this protein domain contains 30 Lys and Arg residues (26 of these are observable in the p97 crystal structure, pdb # 3CF3
PDF
Album
Review
Published 09 Oct 2020

Chan–Evans–Lam N1-(het)arylation and N1-alkеnylation of 4-fluoroalkylpyrimidin-2(1H)-ones

  • Viktor M. Tkachuk,
  • Oleh O. Lukianov,
  • Mykhailo V. Vovk,
  • Isabelle Gillaizeau and
  • Volodymyr A. Sukach

Beilstein J. Org. Chem. 2020, 16, 2304–2313, doi:10.3762/bjoc.16.191

Graphical Abstract
  • analogous enamides [57], the facile [2 + 2] photocycloaddition process likely occurred due to favorable orientation of the interacting molecules and close contacts between alkene carbon atoms in the crystal structure. Consequently, the synthesis of product 5c was performed in darkness. N1-Styryl-substituted
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020

Tools for generating and analyzing glycan microarray data

  • Akul Y. Mehta,
  • Jamie Heimburg-Molinaro and
  • Richard D. Cummings

Beilstein J. Org. Chem. 2020, 16, 2260–2271, doi:10.3762/bjoc.16.187

Graphical Abstract
  • this software a user uploads a glycan binding protein complexed to a carbohydrate fragment in PDB format. This need not be a co-crystal structure, and can be a modeled structure as well. The application then finds glycans that contain this fragment which are present on the CFG microarray data and
PDF
Album
Review
Published 10 Sep 2020

Synthetic approaches to bowl-shaped π-conjugated sumanene and its congeners

  • Shakeel Alvi and
  • Rashid Ali

Beilstein J. Org. Chem. 2020, 16, 2212–2259, doi:10.3762/bjoc.16.186

Graphical Abstract
  • twentieth century when for the first time corannulene was reported by Barth et al. [10] at the University of Michigan (USA) in 1966 (crystal structure 1971) [11]. On the other hand, since the discovery of fullerene (C60) in 1985 [12] by Sir Harry Kroto and the first synthesis of sumanene in 2003 by Sakurai
  • not only confirmed by spectroscopic data but also identified by virtue of the single crystal structure. The reason for their unsuccessful results may be the generation of strain in the sumanene molecule from planar aromatic architecture under the experimental reaction conditions. In the quest for
  • unable to isolate dioxosumanene 39 under similar reaction conditions in reasonable yield. The structures of these compounds were established by spectroscopy means and also in the case of monosumanene 38, they obtained the single crystal structure which was showing almost a similar bowl depth as for the
PDF
Album
Review
Published 09 Sep 2020

Access to highly substituted oxazoles by the reaction of α-azidochalcone with potassium thiocyanate

  • Mysore Bhyrappa Harisha,
  • Pandi Dhanalakshmi,
  • Rajendran Suresh,
  • Raju Ranjith Kumar and
  • Shanmugam Muthusubramanian

Beilstein J. Org. Chem. 2020, 16, 2108–2118, doi:10.3762/bjoc.16.178

Graphical Abstract
  • ) using ethyl acetate/petroleum ether mixture to afford product 4. Examples of biologically active oxazole and aminothiazole scaffolds. Large-scale synthesis of 3i. a) At the start of the reaction, b) after the reaction. ORTEP diagram of compound 5. X-ray crystal structure of 4h. Strategies for the
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2020

Isolation and structure determination of a tetrameric sulfonyl dilithio methandiide in solution based on crystal structure analysis and 6Li/13C NMR spectroscopic data

  • Jürgen Vollhardt,
  • Hans Jörg Lindner and
  • Hans-Joachim Gais

Beilstein J. Org. Chem. 2020, 16, 2057–2063, doi:10.3762/bjoc.16.172

Graphical Abstract
  • up to now. Herein, we describe the isolation and determination of the structure of tetrameric dilithio (trimethylsilyl)(phenylsulfonyl) methandiide in solution and in the crystal. The elucidation of the structure of the tetramer is based on crystal structure analysis and 13C/6Li NMR spectroscopic
  • in THF solution in fast equilibrium with a further aggregate, which is stable only at low temperatures. Keywords: crystal structure; dilithio sulfonyl methandiide; NMR; solution structure; X-ray analysis; Introduction Functionalized dilithio methandiides I–III (Figure 1) are a fascinating class of
  • and sulfonyl-substituted dilithio methandiide 2a [14][15]. The use of n-BuLi, inadvertently containing Li2O, had yielded prismatic crystals of 2a. An X-ray crystal structure analysis had shown a Ci symmetric hexamer, (2a)6·Li2O·(THF)6, the dianionic C atoms of which are each coordinated by two Li
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2020

pH- and concentration-dependent supramolecular self-assembly of a naturally occurring octapeptide

  • Goutam Ghosh and
  • Gustavo Fernández

Beilstein J. Org. Chem. 2020, 16, 2017–2025, doi:10.3762/bjoc.16.168

Graphical Abstract
  • Information File 1) of galectin-1, a β-sheet lectin protein that is available in bovine spleen [53] (for a detailed crystal structure see the Protein Data Bank; PDB ID 1SLT). Given the amphiphilic and pH-responsive nature of PEP-1, we investigated both the pH- and concentration-dependent formation of
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2020

Controlling the stereochemistry in 2-oxo-aldehyde-derived Ugi adducts through the cinchona alkaloid-promoted electrophilic fluorination

  • Yuqing Wang,
  • Gaigai Wang,
  • Anatoly A. Peshkov,
  • Ruwei Yao,
  • Muhammad Hasan,
  • Manzoor Zaman,
  • Chao Liu,
  • Stepan Kashtanov,
  • Olga P. Pereshivko and
  • Vsevolod A. Peshkov

Beilstein J. Org. Chem. 2020, 16, 1963–1973, doi:10.3762/bjoc.16.163

Graphical Abstract
  • asymmetric electrophilic fluorination for derivatizing the 2-oxo-aldehyde-derived Ugi adducts. This allowed us to obtain the post-Ugi products fluorinated at the peptidyl position with the enantiomeric excess values in several instances reaching more than 70%. Molecular representation of the X-ray crystal
  • structure of (S)-12e (slow enantiomer). Post-transformations of 2-oxo-aldehyde-derived Ugi adducts 8. Synthesis of 2-oxo-aldehyde-derived Ugi adducts. Asymmetric protocols for Passerini three-component reaction (P-3CR). Asymmetric protocols for Ugi four-component reaction (U-4CR) by Houk, Tan and co-workers
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2020

Synthesis, docking study and biological evaluation of ᴅ-fructofuranosyl and ᴅ-tagatofuranosyl sulfones as potential inhibitors of the mycobacterial galactan synthesis targeting the galactofuranosyltransferase GlfT2

  • Marek Baráth,
  • Jana Jakubčinová,
  • Zuzana Konyariková,
  • Stanislav Kozmon,
  • Katarína Mikušová and
  • Maroš Bella

Beilstein J. Org. Chem. 2020, 16, 1853–1862, doi:10.3762/bjoc.16.152

Graphical Abstract
  • are listed in Table 1. Firstly, the UDP-Galf native donor substrate was docked into the GlfT2 crystal structure to observe the reference docking score and to predict the Ki value for the native donor substrate. The predicted Ki value of the UDP-Galf is 0.333 µM, however, the experimentally observed Km
PDF
Album
Supp Info
Full Research Paper
Published 27 Jul 2020
Other Beilstein-Institut Open Science Activities