Search results

Search for "deprotonation" in Full Text gives 496 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Combining the Ugi-azide multicomponent reaction and rhodium(III)-catalyzed annulation for the synthesis of tetrazole-isoquinolone/pyridone hybrids

  • Gerardo M. Ojeda,
  • Prabhat Ranjan,
  • Pavel Fedoseev,
  • Lisandra Amable,
  • Upendra K. Sharma,
  • Daniel G. Rivera and
  • Erik V. Van der Eycken

Beilstein J. Org. Chem. 2019, 15, 2447–2457, doi:10.3762/bjoc.15.237

Graphical Abstract
  • substrate 1a via deprotonation of the amide to form complex A, in which it is very likely that a tetrazole nitrogen atom forms a dative bond with the metal center. The next step is the crucial C–H activation of the amide ortho-position leading to intermediate B with elimination of AcOH. There are examples
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2019

Isolation and biosynthesis of an unsaturated fatty acid with unusual methylation pattern from a coral-associated bacterium Microbulbifer sp.

  • Amit Raj Sharma,
  • Enjuro Harunari,
  • Tao Zhou,
  • Agus Trianto and
  • Yasuhiro Igarashi

Beilstein J. Org. Chem. 2019, 15, 2327–2332, doi:10.3762/bjoc.15.225

Graphical Abstract
  • intermediate, from which deprotonation occurs at C9 to give an internal olefin (Scheme 1). In the case of 1, methylation at the C3 carbon is inconsistent with the regular methylation pattern that occurs in fatty acids synthesized by the FAS (fatty acid synthase) or polyketides from the PKS (polyketide synthase
  • methyltransferase, followed by 1,2-hydride shift and deprotonation, and a subsequent reduction of the exo-methylene intermediate gives rise to a methyl group (Scheme 2) [18]. The presence of the exo-methylene intermediate was experimentally proved but the enzyme responsible for the double bond reduction has not
PDF
Album
Supp Info
Full Research Paper
Published 30 Sep 2019

Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups

  • Xiaowei Li,
  • Xiaolin Shi,
  • Xiangqian Li and
  • Dayong Shi

Beilstein J. Org. Chem. 2019, 15, 2213–2270, doi:10.3762/bjoc.15.218

Graphical Abstract
PDF
Album
Review
Published 23 Sep 2019

Harnessing enzyme plasticity for the synthesis of oxygenated sesquiterpenoids

  • Melodi Demiray,
  • David J. Miller and
  • Rudolf K. Allemann

Beilstein J. Org. Chem. 2019, 15, 2184–2190, doi:10.3762/bjoc.15.215

Graphical Abstract
  • closure to form the bisabolyl cation (6). A [1,3]-hydride shift to form carbocation 7 and 1,10-ring closure yield the amorphyl cation (8). Finally, deprotonation generates amorpha-4,11-diene (3) [8][9]. Several sesquiterpene synthases including ADS accept FDP analogues containing a variety of heteroatoms
  • bisabolyl cation and the amorphane skeleton. Rather the active site conformations of 11 and cation 22 appear to enable a 1,11-cyclisation to 23. A subsequent [1,3]-hydride shift to cation 24 and deprotonation from C15 lead to 8-methoxy-γ-humulene (20, Scheme 3A). Alternatively, the nucleophilic 8-methoxy
  • group could react at C10 to induce a fast 1,11-cyclisation, forming cation 25, which effectively competes with the isomerization of 11 to 8-methoxy-NDP. A subsequent [1,3]-hydride shift leads to 24 (Scheme 3A). Direct deprotonation of 22 at C15 forms the minor reaction product (E)-8-methoxy-β-farnesene
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2019

1,2,3-Triazolium macrocycles in supramolecular chemistry

  • Mastaneh Safarnejad Shad,
  • Pulikkal Veettil Santhini and
  • Wim Dehaen

Beilstein J. Org. Chem. 2019, 15, 2142–2155, doi:10.3762/bjoc.15.211

Graphical Abstract
  • the kinetic rate of the equilibrium between 18a and 18b, making both rotamers observable in the 1H NMR spectra. Conversely, after deprotonation of the ammonium moieties the macrocycle 18a is forced to adopt a helix-type contracted conformation (two slowly interconverting rotamers 18c and 18d) with a
  • mechanism has been proposed for the MIM macrocycle 19 involving a stepwise co-conformational progression. After the deprotonation of dibenzylammonium (DBA) sites, the rings prefer to move toward the adjacent N-methyl-1,2,3-triazolium (MTA) sites to the thermodynamically stable co-conformations rather than
PDF
Album
Review
Published 12 Sep 2019

Regioselective Pd-catalyzed direct C1- and C2-arylations of lilolidine for the access to 5,6-dihydropyrrolo[3,2,1-ij]quinoline derivatives

  • Hai-Yun Huang,
  • Haoran Li,
  • Thierry Roisnel,
  • Jean-François Soulé and
  • Henri Doucet

Beilstein J. Org. Chem. 2019, 15, 2069–2075, doi:10.3762/bjoc.15.204

Graphical Abstract
  • ) might be due to an easier coordination of acetates to palladium which favors the concerted metallation deprotonation (CMD) mechanism [40]. The regioselectivities observed using acetate bases are consistent with a CMD mechanism. Then, a set of aryl bromides was reacted with lilolidine using 2 mol % of
PDF
Album
Supp Info
Full Research Paper
Published 29 Aug 2019

Synthesis of benzo[d]imidazo[2,1-b]benzoselenoazoles: Cs2CO3-mediated cyclization of 1-(2-bromoaryl)benzimidazoles with selenium

  • Mio Matsumura,
  • Yuki Kitamura,
  • Arisa Yamauchi,
  • Yoshitaka Kanazawa,
  • Yuki Murata,
  • Tadashi Hyodo,
  • Kentaro Yamaguchi and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2019, 15, 2029–2035, doi:10.3762/bjoc.15.199

Graphical Abstract
  • probably deprotonation of the heterocyclic rings with a base. Moreover, nucleophilic aromatic substitution (SNAr) reactions between an aryl halide and a selenium reagent such as aryl selenide anion or diaryl diselenide for C(Ar)–Se bond formation using a base have been reported [20][21][22]. However, the
PDF
Album
Supp Info
Letter
Published 26 Aug 2019

Reactions of 2-carbonyl- and 2-hydroxy(or methoxy)alkyl-substituted benzimidazoles with arenes in the superacid CF3SO3H. NMR and DFT studies of dicationic electrophilic species

  • Dmitry S. Ryabukhin,
  • Alexey N. Turdakov,
  • Natalia S. Soldatova,
  • Mikhail O. Kompanets,
  • Alexander Yu. Ivanov,
  • Irina A. Boyarskaya and
  • Aleksander V. Vasilyev

Beilstein J. Org. Chem. 2019, 15, 1962–1973, doi:10.3762/bjoc.15.191

Graphical Abstract
  • final hydrolysis of superacidic reaction mixtures. There is another possible reaction pathway for 2-acetylbenzimidazole (2) on the stage of the formation of cation XI. The latter may undergo deprotonation at the methyl group, which results in the formation of alkenyl benzimidazole 11. Compound 11 may be
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2019

Installation of -SO2F groups onto primary amides

  • Jing Liu,
  • Shi-Meng Wang,
  • Njud S. Alharbi and
  • Hua-Li Qin

Beilstein J. Org. Chem. 2019, 15, 1907–1912, doi:10.3762/bjoc.15.186

Graphical Abstract
  • fluorosulfonyl amides 2 with nucleophilicity may attract significant attention for further applications. As depicted in Scheme 4, a plausible reaction mechanism is proposed for SO2F2-mediated transformation of amides to N-fluorosulfonyl amides. The reaction was initiated by the deprotonation of amide 1 with the
PDF
Album
Supp Info
Letter
Published 09 Aug 2019

Tautomerism as primary signaling mechanism in metal sensing: the case of amide group

  • Vera Deneva,
  • Georgi Dobrikov,
  • Aurelien Crochet,
  • Daniela Nedeltcheva,
  • Katharina M. Fromm and
  • Liudmil Antonov

Beilstein J. Org. Chem. 2019, 15, 1898–1906, doi:10.3762/bjoc.15.185

Graphical Abstract
  • complex and the deprotonated ligand, shown in Figure 4, indicates that the complex formation is not related to deprotonation. These results coincide with the results obtained for compound 3 [15]. The complexation abilities of 6 towards some alkaline-earth metal ions were studied and the obtained spectra
  • (ClO4)2·4H2O (Aldrich) and Ba(ClO4)2·xH2O (Fluka) were vacuum dried at 90 °C for 3 days. Due to the red shift upon complexation, the estimation of the stability constants was performed at the maximum of the complex using the final complex spectrum (Figure 5). Deprotonation was made with trimethylamine
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2019

Inherent atomic mobility changes in carbocation intermediates during the sesterterpene cyclization cascade

  • Hajime Sato,
  • Takaaki Mitsuhashi,
  • Mami Yamazaki,
  • Ikuro Abe and
  • Masanobu Uchiyama

Beilstein J. Org. Chem. 2019, 15, 1890–1897, doi:10.3762/bjoc.15.184

Graphical Abstract
  • ) triggering the biosynthetic cyclization cascade by the elimination of pyrophosphate or by protonation; (ii) preorganization of the substrate to generate the reactive conformation; (iii) protection of reactive intermediates from water; and (iv) termination of the reaction by deprotonation or hydration. We
  • diphosphate, IM: intermediate. Quiannulatene is formed by the deprotonation of IM11. Phase (I): 5/12/5 tricycle formation is highlighted in blue. Phase (II): conformational changes and hydrogen shifts are highlighted in orange. Phase (III): ring rearrangements are highlighted in yellow. Reaction mechanisms of
PDF
Album
Supp Info
Letter
Published 07 Aug 2019

Halide metathesis in overdrive: mechanochemical synthesis of a heterometallic group 1 allyl complex

  • Ross F. Koby,
  • Nicholas R. Rightmire,
  • Nathan D. Schley,
  • Timothy P. Hanusa and
  • William W. Brennessel

Beilstein J. Org. Chem. 2019, 15, 1856–1863, doi:10.3762/bjoc.15.181

Graphical Abstract
  • which alkali metal complexes are known, including those of Li [15], Na [16], K [17][18], and Cs [18]. These have been formed via traditional solvent-based routes, by deprotonation of the substituted propene precursor with a metal alkyl or hydride (Equation 2) or with the metal itself (Equation 3) [18
PDF
Album
Supp Info
Full Research Paper
Published 02 Aug 2019

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
  • 2-AP to Cu(OTf)2, forming an intermediate 7, that was followed by migratory insertion by haloalkyne (Scheme 4). The organocopper species 8 thus formed would undergo deprotonation/oxidation and finally reductive elimination to give the cyclized product 6 (Scheme 4). Along with the unprecedented
PDF
Album
Review
Published 19 Jul 2019

Superelectrophilic carbocations: preparation and reactions of a substrate with six ionizable groups

  • Sean H. Kennedy,
  • Makafui Gasonoo and
  • Douglas A. Klumpp

Beilstein J. Org. Chem. 2019, 15, 1515–1520, doi:10.3762/bjoc.15.153

Graphical Abstract
  • position and deprotonation of the para-carbon to complete the arylation step. For the cyclization product 11, theoretical calculations indicate that cyclization requires deprotonation at the pyridinium ring [11]. Thus, either the tetracation 15 or the pentacation 16 is the likely precursor to the pyrido
  • substrate 9 provide exclusively the arylated product 10 in the presence of benzene, while substrate 18 leads to a significant proportion of cyclization product 20? Our proposed mechanism of cyclization involves deprotonation of an N–H bond at the pyridinium ring. Although pyridinium deprotonation is not
  • and leads to greater N–H deprotonation. Tetracation 4 and pentacation 5 tend to undergo N–H deprotonation more readily, and consequently, this leads to rapid cyclization reactions. Regarding the site of deprotonation, hexacation 14 could potentially undergo N–H deprotonation at the inside pyridinium
PDF
Album
Supp Info
Full Research Paper
Published 09 Jul 2019
Graphical Abstract
  • equivalent of AlCl3 is coordinated to the central atom of the allene system of the complex 13 and gives intermediate 16. The latter, in the absence of nucleophiles (arene molecules), undergoes deprotonation from the methyl group affording butadiene 14. Hydrolysis of the latter resulted in compounds Z-9 and E
PDF
Album
Supp Info
Full Research Paper
Published 08 Jul 2019

Synthesis of pyrrolo[1,2-a]quinolines by formal 1,3-dipolar cycloaddition reactions of quinolinium salts

  • Anthony Choi,
  • Rebecca M. Morley and
  • Iain Coldham

Beilstein J. Org. Chem. 2019, 15, 1480–1484, doi:10.3762/bjoc.15.149

Graphical Abstract
  • Anthony Choi Rebecca M. Morley Iain Coldham Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK 10.3762/bjoc.15.149 Abstract Quinolinium salts, Q+-CH2-CO2Me Br− and Q+-CH2-CONMe2 Br− (where Q = quinoline), were prepared from quinolines. Deprotonation of these salts
  • ylide, or by condensation of a primary amine with an aldehyde to give an imine followed by prototropy or deprotonation to give N-metalated azomethine ylides (see, for example, [5][6][7][8][9][10][11][12][13][14][15][16][17][18]). An alternative method is to prepare a salt of a heterocycle, typically by
  • N-alkylation of a pyridine [19][20][21][22][23][24][25][26][27], isoquinoline [26][27][28][29][30][31][32], or related structures [33][34][35], followed by deprotonation. Such ylides are formally azomethine structures assuming reactivity of the aromatic ring as an iminium ion, although the reaction
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2019

Borylation and rearrangement of alkynyloxiranes: a stereospecific route to substituted α-enynes

  • Ruben Pomar Fuentespina,
  • José Angel Garcia de la Cruz,
  • Gabriel Durin,
  • Victor Mamane,
  • Jean-Marc Weibel and
  • Patrick Pale

Beilstein J. Org. Chem. 2019, 15, 1416–1424, doi:10.3762/bjoc.15.141

Graphical Abstract
  • -coupling reactions. Herein, stereodefined 1,3-enynes, including tetrasubstituted ones, were straightforwardly synthesized from cis or trans-alkynylated oxiranes in good to excellent yields by a one-pot cascade process. The procedure relies on oxirane deprotonation, borylation and a stereospecific
  • avoid any silyl migration [12]. As already shown [12][13], n-butyllithium proved to be very efficient, although stronger or complex bases are usually required to produce oxiranyl anions [1][2][24][25][26][27][28]. Upon deprotonation, the corresponding oxiranyllithium was sufficiently stable at −78 °C
  • afforded a mixture of the 2 possible isomers, although in similar overall yield (Table 2, entry 2 vs 1). Decreasing the temperature from −78 to −92 °C for the deprotonation–borylation steps rewardingly allowed the exclusive formation of the E-enyne 4 as a single isomer (Table 2, entry 3). After these
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2019

Alkylation of lithiated dimethyl tartrate acetonide with unactivated alkyl halides and application to an asymmetric synthesis of the 2,8-dioxabicyclo[3.2.1]octane core of squalestatins/zaragozic acids

  • Herman O. Sintim,
  • Hamad H. Al Mamari,
  • Hasanain A. A. Almohseni,
  • Younes Fegheh-Hassanpour and
  • David M. Hodgson

Beilstein J. Org. Chem. 2019, 15, 1194–1202, doi:10.3762/bjoc.15.116

Graphical Abstract
  • − 2112, USA Department of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al Khoud 123, Muscat, Sultanate of Oman permanent address: University of Kufa, Najaf Governorate, Iraq 10.3762/bjoc.15.116 Abstract (R,R)-Dimethyl tartrate acetonide 7 in THF/HMPA undergoes deprotonation with
PDF
Album
Supp Info
Full Research Paper
Published 31 May 2019

Switchable selectivity in Pd-catalyzed [3 + 2] annulations of γ-oxy-2-cycloalkenones with 3-oxoglutarates: C–C/C–C vs C–C/O–C bond formation

  • Yang Liu,
  • Julie Oble and
  • Giovanni Poli

Beilstein J. Org. Chem. 2019, 15, 1107–1115, doi:10.3762/bjoc.15.107

Graphical Abstract
  • transient η2-alkene complex A (steps a and b). Deprotonation of the pro-nucleophile 1a by the counter-anion of the η3-allyl-Pd complex exchanges the benzoate for the enolate anion (step c) [50], and following C–C bond formation from the resulting anion-scrambled complex C leads to the Pd(0) complex D (step
PDF
Album
Supp Info
Full Research Paper
Published 16 May 2019

Multicomponent reactions (MCRs): a useful access to the synthesis of benzo-fused γ-lactams

  • Edorta Martínez de Marigorta,
  • Jesús M. de Los Santos,
  • Ana M. Ochoa de Retana,
  • Javier Vicario and
  • Francisco Palacios

Beilstein J. Org. Chem. 2019, 15, 1065–1085, doi:10.3762/bjoc.15.104

Graphical Abstract
  • start with the formation of an imine intermediate between the aldehyde function of 33 and the amine 2, followed by a nucleophilic attack by the diketone and a final intramolecular cyclization, the Han group proposes a different pathway, with an initial deprotonation of ketoacid 34 (R2 = Me, Ar, R3 = OH
PDF
Album
Review
Published 08 May 2019

Mechanistic investigations on multiproduct β-himachalene synthase from Cryptosporangium arvum

  • Jan Rinkel and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2019, 15, 1008–1019, doi:10.3762/bjoc.15.99

Graphical Abstract
  • , but also α-himachalene (2), γ-himachalene (3), longifolene (4), longicyclene (5), and α-longipinene (6) are traditionally considered to be derived from the himachalyl cation (B) [8][37] (Scheme 2). Whereas 1–3 are simple deprotonation products of B, 4 and 5 require a further 3,7-ring closure, leading
  • to the non-classical cation C, which is a derivative of the 2-norbornyl cation [38]. This system either collapses by deprotonation at the methyl group to longifolene (4), or by deprotonation at C-4 with formation of a cyclopropane ring to longicyclene (5). Starting from B, a 2,7-ring closure and
  • deprotonation at the same carbon atom gives α-longipinene (6). For the main product 1, the deprotonation was followed by an incubation of HcS and FPPS with (2-2H)GPP [39] and IPP, which resulted in unlabelled 1 as observed by GC–MS (Figure 3). In case of a deprotonation at a methylene group, relevant for the
PDF
Album
Supp Info
Full Research Paper
Published 02 May 2019

SO2F2-mediated transformation of 2'-hydroxyacetophenones to benzo-oxetes

  • Revathi Lekkala,
  • Ravindar Lekkala,
  • Balakrishna Moku,
  • K. P. Rakesh and
  • Hua-Li Qin

Beilstein J. Org. Chem. 2019, 15, 976–980, doi:10.3762/bjoc.15.95

Graphical Abstract
  • proposed to be E-configured. However, the exact configuration was not confirmed [40]. Two possible reaction mechanisms were proposed for this SO2F2-mediated transformation of 2'-hydroxyacetophenones to benzo-oxetes (Scheme 3). The first mechanism commences with the deprotonation of 2'-hydroxyacetophenone 1
  • intermediate I. The latter then reacts with SO2F2 to give intermediate II and fluoride anion. The subsequent deprotonation of intermediate B by the base generates phenol anion III, which finally undergoes an intramolecular cyclization to give the corresponding benzo-oxete 2. Conclusion We have developed a new
PDF
Album
Supp Info
Letter
Published 25 Apr 2019

Coordination chemistry and photoswitching of dinuclear macrocyclic cadmium-, nickel-, and zinc complexes containing azobenzene carboxylato co-ligands

  • Jennifer Klose,
  • Tobias Severin,
  • Peter Hahn,
  • Alexander Jeremies,
  • Jens Bergmann,
  • Daniel Fuhrmann,
  • Jan Griebel,
  • Bernd Abel and
  • Berthold Kersting

Beilstein J. Org. Chem. 2019, 15, 840–851, doi:10.3762/bjoc.15.81

Graphical Abstract
  • , 5) were obtained directly from stoichiometric complexation reactions between H2L·6HCl, Zn(OAc)2·2H2O, and the corresponding azobenzene carboxylate ion (prepared in situ from the free acid by deprotonation with NEt3 as a base) in methanol. The green-brown nickel (2, 4, 7 and 9) and red-orange colored
  • -H appears as a shoulder around 325 nm in 1. The slight red-shift may be a consequence of deprotonation and coordination to the Cd2+ ions. The spectrum of the deprotonated azoH– ion, for comparison, absorbs at 329 nm. The absorption bands above 310 nm can thus be attributed to the π–π* and n–π
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2019

Stereochemical investigations on the biosynthesis of achiral (Z)-γ-bisabolene in Cryptosporangium arvum

  • Jan Rinkel and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2019, 15, 789–794, doi:10.3762/bjoc.15.75

Graphical Abstract
  • challenging since the stereoinformation is destroyed in the final deprotonation step, which prevents any conclusion at the product stage, e.g., by use of enantioselectively labelled substrates [8][9][10]. If the nucleophilic attack of the C-6,C-7 double bond at the allylic system proceeds with an anti
PDF
Album
Supp Info
Letter
Published 27 Mar 2019

Diastereo- and enantioselective preparation of cyclopropanol derivatives

  • Marwan Simaan and
  • Ilan Marek

Beilstein J. Org. Chem. 2019, 15, 752–760, doi:10.3762/bjoc.15.71

Graphical Abstract
  • -BuOOLi (oxenoid), simply generated by deprotonation of t-BuOOH with n-BuLi, led to the copper alkoxide, as anticipated, without the formation of free radical intermediates. As already reported [78], the expected 2,2,3,3-tetrasubstituted cyclopropanols 5 were obtained as single diastereoisomers (Scheme 5
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019
Other Beilstein-Institut Open Science Activities