Search results

Search for "1H-pyrazole" in Full Text gives 39 result(s) in Beilstein Journal of Organic Chemistry.

Unprecedented synthesis of a 14-membered hexaazamacrocycle

  • Anastasia A. Fesenko and
  • Anatoly D. Shutalev

Beilstein J. Org. Chem. 2023, 19, 1728–1740, doi:10.3762/bjoc.19.126

Graphical Abstract
  • Anastasia A. Fesenko Anatoly D. Shutalev N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russian Federation 10.3762/bjoc.19.126 Abstract The transformation of 3-[(ethoxymethylene)amino]-1-methyl-1H-pyrazole-4-carbonitrile into the 14
  • -2-methyl-2,4-dihydro-5H-pyrazolo[3,4-d]pyrimidin-5-amine described by Baraldi et al. [41] using the reaction of 3-[(ethoxymethylene)amino]-1-methyl-1H-pyrazole-4-carbonitrile with excess hydrazine hydrate in EtOH under reflux. However, a pyrazole-fused 1,2,4,8,9,11-hexaazamacrocycle was unexpectedly
  • the detailed studies of the hydrazine-promoted transformation of 3-[(ethoxymethylene)amino]-1-methyl-1H-pyrazole-4-carbonitrile (4) or 4-imino-2-methyl-2,4-dihydro-5H-pyrazolo[3,4-d]pyrimidin-5-amine (8) into 2,10-dimethyl-2,8,10,16-tetrahydrodipyrazolo[3,4-e:3',4'-l][1,2,4,8,9,11
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2023

An efficient metal-free and catalyst-free C–S/C–O bond-formation strategy: synthesis of pyrazole-conjugated thioamides and amides

  • Shubham Sharma,
  • Dharmender Singh,
  • Sunit Kumar,
  • Vaishali,
  • Rahul Jamra,
  • Naveen Banyal,
  • Deepika,
  • Chandi C. Malakar and
  • Virender Singh

Beilstein J. Org. Chem. 2023, 19, 231–244, doi:10.3762/bjoc.19.22

Graphical Abstract
  • -tethered thioamides inspired us to generate analogous pyrazole-pyridine conjugates having an amide linkage. For this purpose, 5-(4-fluorophenyl)-1-phenyl-1H-pyrazole-3-carbaldehyde (1) and 2-aminopyridine (F) were selected as the model reactants to explore this transformation. Initially, we conducted an
  • product was the desired product, 5-(4-fluorophenyl)-1-phenyl-N-(pyridin-2-yl)-1H-pyrazole-3-carboxamide (1F), as analyzed by spectroscopic data. Next, we screened other organic solvents including DMF, CH3CN, THF, and MeOH to improve the yield of the desired product 1F, but only a slight improvement in the
  • . Using this method, 3-(4-chlorophenyl)-1-phenyl-N-(pyridin-2-yl)-1H-pyrazole-5-carboxamide (10F) was produced in good yield (62%), while 9F was generated in low yield (36%) as depicted in Scheme 8. Based on the current experimental observations and literature reports [62][83] a plausible mechanistic
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2023

Chemistry of polyhalogenated nitrobutadienes, 17: Efficient synthesis of persubstituted chloroquinolinyl-1H-pyrazoles and evaluation of their antimalarial, anti-SARS-CoV-2, antibacterial, and cytotoxic activities

  • Viktor A. Zapol’skii,
  • Isabell Berneburg,
  • Ursula Bilitewski,
  • Melissa Dillenberger,
  • Katja Becker,
  • Stefan Jungwirth,
  • Aditya Shekhar,
  • Bastian Krueger and
  • Dieter E. Kaufmann

Beilstein J. Org. Chem. 2022, 18, 524–532, doi:10.3762/bjoc.18.54

Graphical Abstract
  • Plasmodium has been developed and is reported in the literature [24]. Results and Discussion The vinylic SN reaction of 2-nitroperchlorobutadiene (1) with four equivalents of the azoles such as 1H-pyrazole, 1H-1,2,4-triazole, or 1H-benzotriazole affords similarly to [25] the corresponding 1,1
  • -Elimination of an azole from A leads to formation of an isolable diene B. Upon further heating, the amino group attacks the electrophilic C–Cl position of the trichlorovinylic group intramolecularly, leading to a 2,3-dihydro-1H-pyrazole C. Finally, pyrazoles 3 are obtained upon 1,3-elimination of hydrochloric
PDF
Album
Supp Info
Full Research Paper
Published 09 May 2022

Regioselective synthesis of methyl 5-(N-Boc-cycloaminyl)-1,2-oxazole-4-carboxylates as new amino acid-like building blocks

  • Jolita Bruzgulienė,
  • Greta Račkauskienė,
  • Aurimas Bieliauskas,
  • Vaida Milišiūnaitė,
  • Miglė Dagilienė,
  • Gita Matulevičiūtė,
  • Vytas Martynaitis,
  • Sonata Krikštolaitytė,
  • Frank A. Sløk and
  • Algirdas Šačkus

Beilstein J. Org. Chem. 2022, 18, 102–109, doi:10.3762/bjoc.18.11

Graphical Abstract
  • peptide-like structure. Heterocyclic amino acids and related compounds have been used to prepare synthetic DNA-encoded compound libraries for the discovery of small molecule protein ligands [23][24][25]. Recently, a highly specific and potent p38α kinase inhibitor containing a 3-amino-1-phenyl-1H-pyrazole
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2022

Synthesis of new pyrazolo[1,2,3]triazines by cyclative cleavage of pyrazolyltriazenes

  • Nicolai Wippert,
  • Martin Nieger,
  • Claudine Herlan,
  • Nicole Jung and
  • Stefan Bräse

Beilstein J. Org. Chem. 2021, 17, 2773–2780, doi:10.3762/bjoc.17.187

Graphical Abstract
  • synthetically and successful syntheses of different manifold isomers. 3,6-Dihydro-4H-pyrazolo[3,4-d][1,2,3]triazin-4-ones 2, as one example of the diverse compound class, can be gained via diazotization of 3-amino-1H-pyrazole-4-carboxamides 1a or 3-amino-1H-pyrazole-4-carbonitriles 1b and subsequent cyclization
  • the starting 3-amino-1H-pyrazole-4-carboxamides 1a or 3-amino-1H-pyrazole-4-carbonitriles 1b is altered [26]. Furthermore, several 2,7-dihydro-3H-imidazo[1,2-c]pyrazolo[4,3-e][1,2,3]triazines 4 were described. However, while 3,6-substituted-3,6-dihydro-4H-pyrazolo[3,4-d][1,2,3]triazin-4-ones 2 and 3,7
  • the designed synthetic route, 3-(3,3-diisopropyltriaz-1-en-1-yl)-1H-pyrazole-4-carbonitrile (15) was synthesized in a first step using the commercially available 3-amino-1H-pyrazole-4-carbonitrile (16). Thus, the aminopyrazole was diazotized in aqueous media using hydrochloric acid and sodium nitrite
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2021

Copper-mediated oxidative C−H/N−H activations with alkynes by removable hydrazides

  • Feng Xiong,
  • Bo Li,
  • Chenrui Yang,
  • Liang Zou,
  • Wenbo Ma,
  • Linghui Gu,
  • Ruhuai Mei and
  • Lutz Ackermann

Beilstein J. Org. Chem. 2021, 17, 1591–1599, doi:10.3762/bjoc.17.113

Graphical Abstract
  • context, You [25], Huang [26], Liu [27], Li [28], and co-workers elegantly disclosed copper-mediated/catalyzed cascade C−H alkynylation and annulation with terminal alkynes to afford 3-methyleneisoindolinone derivatives, through the assistance of 8-aminoquinoline [29] or 2-aminophenyl-1H-pyrazole [30
PDF
Album
Supp Info
Full Research Paper
Published 08 Jul 2021

Synthesis of trifluoromethyl ketones by nucleophilic trifluoromethylation of esters under a fluoroform/KHMDS/triglyme system

  • Yamato Fujihira,
  • Yumeng Liang,
  • Makoto Ono,
  • Kazuki Hirano,
  • Takumi Kagawa and
  • Norio Shibata

Beilstein J. Org. Chem. 2021, 17, 431–438, doi:10.3762/bjoc.17.39

Graphical Abstract
  • common nitrogen-containing compounds such as pyridine, pyrazine, 1H-pyrazole, 1H-indole, 1-methyl-1H-indole, piperidine, and piperazine were subjected to screening. Pyridine and piperidine slightly hamper the reaction of 1g (Table 2, entries 2 and 7, 80–82%). Other nitrogen-containing compounds have more
PDF
Album
Supp Info
Letter
Published 12 Feb 2021

Access to highly substituted oxazoles by the reaction of α-azidochalcone with potassium thiocyanate

  • Mysore Bhyrappa Harisha,
  • Pandi Dhanalakshmi,
  • Rajendran Suresh,
  • Raju Ranjith Kumar and
  • Shanmugam Muthusubramanian

Beilstein J. Org. Chem. 2020, 16, 2108–2118, doi:10.3762/bjoc.16.178

Graphical Abstract
  • synthesis of 2,4,5-trisubstituted oxazole from azirine. a) I2, PPh3; b) NaH, 1H-pyrazole; c) 2-bromoacetyl bromide, NaN3; d) heating; e) t-BuOK; f) Ph-CHO, visible light; g) KSCN, K2S2O8. Scope of the α-azidochalcones. The reactions were carried out at reflux temperature, using 1 (1 mmol), 2 (3 mmol
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2020

Anthelmintic drug discovery: target identification, screening methods and the role of open science

  • Frederick A. Partridge,
  • Ruth Forman,
  • Carole J. R. Bataille,
  • Graham M. Wynne,
  • Marina Nick,
  • Angela J. Russell,
  • Kathryn J. Else and
  • David B. Sattelle

Beilstein J. Org. Chem. 2020, 16, 1203–1224, doi:10.3762/bjoc.16.105

Graphical Abstract
  • on to demonstrate that 24 showed a broad activity against other nematode parasite models: H. polygyrus, A. ceylanicum and T. muris. A broadly-related 1-methyl-1H-pyrazole-5-carboxamide series has also been investigated in detail, with compounds identified that show substantially improved potency and
PDF
Album
Review
Published 02 Jun 2020

Ultrasonic-assisted unusual four-component synthesis of 7-azolylamino-4,5,6,7-tetrahydroazolo[1,5-a]pyrimidines

  • Yana I. Sakhno,
  • Maryna V. Murlykina,
  • Oleksandr I. Zbruyev,
  • Anton V. Kozyryev,
  • Svetlana V. Shishkina,
  • Dmytro Sysoiev,
  • Vladimir I. Musatov,
  • Sergey M. Desenko and
  • Valentyn A. Chebanov

Beilstein J. Org. Chem. 2020, 16, 281–289, doi:10.3762/bjoc.16.27

Graphical Abstract
  • Republic 10.3762/bjoc.16.27 Abstract Four-component reactions of 3-amino-1,2,4-triazole or 5-amino-1H-pyrazole-4-carbonitrile with aromatic aldehydes and pyruvic acid or its esters under ultrasonication were studied. Unusual for such a reaction type, a cascade of elementary stages led to the formation of
  • 7-azolylaminotetrahydroazolo[1,5-a]pyrimidines. Keywords: 5-amino-1H-pyrazole-4-carbonitrile; 3-amino-1,2,4-triazole; 7-azolylaminotetrahydroazolo[1,5-a]pyrimidines; heterocycle; multicomponent reaction; ultrasonication; Introduction Tetrahydropyrimidines are heterocycles of high pharmacological
  • reactions involving pyruvic acids (pyruvates) and different α-aminoazoles. Synthesis of 4-arylamino-substituted tetrahydroquinolines. Ultrasound-assisted multicomponent reactions of 3-amino-1,2,4-triazole or 5-amino-1H-pyrazole-4-carbonitrile, aldehydes, and pyruvic acid/ethyl pyruvate. Synthesis of 3-cyano
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2020

Synthesis and herbicidal activities of aryloxyacetic acid derivatives as HPPD inhibitors

  • Man-Man Wang,
  • Hao Huang,
  • Lei Shu,
  • Jian-Min Liu,
  • Jian-Qiu Zhang,
  • Yi-Le Yan and
  • Da-Yong Zhang

Beilstein J. Org. Chem. 2020, 16, 233–247, doi:10.3762/bjoc.16.25

Graphical Abstract
  • substituted 1,3-dimethyl-1H-pyrazole-5-ol, using DMAP as the catalyst. Subsequently, the key enol ester E and M were respectively obtained. Finally, Fries-type rearrangements were performed in anhydrous DCM at room temperature to afford the title compounds I and III [31]. As shown in Scheme 4, the title
PDF
Album
Supp Info
Full Research Paper
Published 19 Feb 2020

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
PDF
Album
Review
Published 19 Jul 2019

One-pot activation–alkynylation–cyclization synthesis of 1,5-diacyl-5-hydroxypyrazolines in a consecutive three-component fashion

  • Christina Görgen,
  • Katharina Boden,
  • Guido J. Reiss,
  • Walter Frank and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2019, 15, 1360–1370, doi:10.3762/bjoc.15.136

Graphical Abstract
  • , starting from phenylglyoxylic acid (1a), phenylacetylene (2a), and Boc-hydrazide (4a) through the formation of 1,4-diphenylbut-3-yne-1,2-dione (3a), with subsequent N-deacylation as the consequence of basic work-up (Scheme 2), furnished 5-benzoyl-3-phenyl-1H-pyrazole (6a) in 41% isolated yield. In addition
  • or Brønsted acidic conditions were accompanied by simultaneous deacylation of substituent R3 finally furnishing 5-(hetero)aroyl-3-(hetero)aryl-1H-pyrazole 6a (for attempted dehydrative aromatization, see Supporting Information File 1, Table S5), as already reported for alkaline deprotection
  • ) and antibacterial activity (center and right). ORTEP plot of 5-benzoyl-3-phenyl-1H-pyrazole (6a) (thermal ellipsoids at 30% probability); the direction of intermolecular N−H···O hydrogen bonding is indicated by dashed lines. Ellipsoid plot of 1-Boc-5-benzoyl-5-hydroxypyrazoline 5a. ORTEP plot and
PDF
Album
Supp Info
Full Research Paper
Published 19 Jun 2019

Molecular iodine-catalyzed one-pot multicomponent synthesis of 5-amino-4-(arylselanyl)-1H-pyrazoles

  • Camila S. Pires,
  • Daniela H. de Oliveira,
  • Maria R. B. Pontel,
  • Jean C. Kazmierczak,
  • Roberta Cargnelutti,
  • Diego Alves,
  • Raquel G. Jacob and
  • Ricardo F. Schumacher

Beilstein J. Org. Chem. 2018, 14, 2789–2798, doi:10.3762/bjoc.14.256

Graphical Abstract
  • -(phenylselanyl)-1H-pyrazol-5-amine was submitted to an oxidative dehydrogenative coupling to produce a diazo compound confirmed by X-ray analysis. Keywords: diaryl diselenide; diazo compound; 1H-pyrazole; molecular iodine; multicomponent reaction; Introduction Selenium-containing compounds are of great
  • the 3-methyl-5-methylsulfanyl-4-phenylselanyl-1H-pyrazole [10]. Our research group described the multicomponent synthesis of 3,5-dimethyl-4-arylselanyl-1H-pyrazoles catalyzed by copper iodide using DMSO as solvent [4]. More recently, Zora and co-workers reported the one-pot preparation of 4
  • diselenides were efficiently coupled to 5-amino-1H-pyrazole to produce the corresponding products in yields ranging from 24% to 80%. However, when the bulkier 1,2-dimesityl diselenide 3f was employed, no product was obtained (Table 2, entry 16). To gain insight into the mechanistic profile we also evaluated
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2018

[3 + 2]-Cycloaddition reaction of sydnones with alkynes

  • Veronika Hladíková,
  • Jiří Váňa and
  • Jiří Hanusek

Beilstein J. Org. Chem. 2018, 14, 1317–1348, doi:10.3762/bjoc.14.113

Graphical Abstract
  • -diphenyl-1H-pyrazole. The calculated difference in energies of transition states leading to 1,3- and 1,4-diphenyl-1H-pyrazole (4.1 kcal·mol−1 = 17.2 kJ·mol−1) predicts at 140 °C the ratio ≈99:1 which corresponds well with found experimental value >95:5 (see entry 3 in Table 4 [83]). There are only some
PDF
Album
Review
Published 05 Jun 2018

Sequential Ugi reaction/base-induced ring closing/IAAC protocol toward triazolobenzodiazepine-fused diketopiperazines and hydantoins

  • Robby Vroemans,
  • Fante Bamba,
  • Jonas Winters,
  • Joice Thomas,
  • Jeroen Jacobs,
  • Luc Van Meervelt,
  • Jubi John and
  • Wim Dehaen

Beilstein J. Org. Chem. 2018, 14, 626–633, doi:10.3762/bjoc.14.49

Graphical Abstract
  • inseparable mixture of diastereomers. Various attempts were made with other azidobenzaldehydes (5-azido-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde, 2-azidoquinoline-3-carbaldehyde and 2-azido-5-nitrobenzaldehyde) and isocyanides (2-morpholinoethyl isocyanide) towards the synthesis of diketopiperazine-fused
  • -methyl-1-phenyl-1H-pyrazole-4-carbaldehyde). The success in the synthesis of diketopiperazine-fused triazolobenzodiazepine prompted us to examine the possibility of making the sequential synthetic route in ‘one-pot’ starting from the Ugi 4-CR (Scheme 4). Thus we initiated the reaction sequence from the
PDF
Album
Supp Info
Full Research Paper
Published 14 Mar 2018

5-Aminopyrazole as precursor in design and synthesis of fused pyrazoloazines

  • Ranjana Aggarwal and
  • Suresh Kumar

Beilstein J. Org. Chem. 2018, 14, 203–242, doi:10.3762/bjoc.14.15

Graphical Abstract
  • described the construction of spiro[indoline-3,4'-pyrazolo[3,4-b]pyridine] derivatives 57 from the multicomponent reaction of 5-amino-3-hydroxy-1-phenyl-1H-pyrazole (46), ketones 56 and isatin 54 in water/acetic acid (3:1) at 90 °C (Scheme 12). Quiroga et al. [58] reported the synthesis of the pyrazolo[3,4
  • products in small amounts namely 3(5)-methyl-5(3)-phenyl-1H-pyrazole (121) obtained by CN bond cleavage and benzoic acid (122) was also observed (Scheme 33). The structure of the regioisomer was established unequivocally by performing 1H,13C-HMQC, 1H,13C- and 1H,15N-HMBC experiments. Aqueous mediated
  • 200 from the cyclocondensation of 5-amino-1-(2,4-dinitrophenyl)-1H-pyrazole-4-carboxamide (199) with aromatic aldehydes in the presence of iodine in acetonitrile (Scheme 55). The synthesized pyrazolo[3,4-d]pyrimidines were evaluated for antibacterial activities. Venkatesan et al. [132] also used 4
PDF
Album
Review
Published 25 Jan 2018

Synthesis, effect of substituents on the regiochemistry and equilibrium studies of tetrazolo[1,5-a]pyrimidine/2-azidopyrimidines

  • Elisandra Scapin,
  • Paulo R. S. Salbego,
  • Caroline R. Bender,
  • Alexandre R. Meyer,
  • Anderson B. Pagliari,
  • Tainára Orlando,
  • Geórgia C. Zimmer,
  • Clarissa P. Frizzo,
  • Helio G. Bonacorso,
  • Nilo Zanatta and
  • Marcos A. P. Martins

Beilstein J. Org. Chem. 2017, 13, 2396–2407, doi:10.3762/bjoc.13.237

Graphical Abstract
  • efficient and regioselective synthesis of pyrazolo[1,5-a]pyrimidines and aryl[heteroaryl]pyrazolo[1,5-a]pyrimidines in acetic acid under reflux. The regioselectivity was attributed to the high nucleophilicity of the amino group in 3-amino-5-methyl-1H-pyrazole and the high electrophilicity of the β-carbon
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2017

Dialkyl dicyanofumarates and dicyanomaleates as versatile building blocks for synthetic organic chemistry and mechanistic studies

  • Grzegorz Mlostoń and
  • Heinz Heimgartner

Beilstein J. Org. Chem. 2017, 13, 2235–2251, doi:10.3762/bjoc.13.221

Graphical Abstract
  • corresponding 1H-pyrazole 36. The cycloaddition occurred with preservation of the configuration of the dipolarophile. In the presence of excess diazomethane the five-membered cycloadducts 35 and 36 were converted into a complex mixture of products. In a very recent study, we demonstrated that the reactions of
  • . Stepwise [3 + 2]-cycloadditions of dimethyl dicyanofumarate (E-1b) and dimethyl dicyanomaleate (Z-1b) with the in situ generated azomethine ylides 32. [3 + 2]-Cycloaddition of diazomethane with dimethyl dicyanofumarate (E-1b) leading to 1H-pyrazole derivative 36. Reversible Diels–Alder reaction of fulvenes
PDF
Album
Review
Published 24 Oct 2017

New tricks of well-known aminoazoles in isocyanide-based multicomponent reactions and antibacterial activity of the compounds synthesized

  • Maryna V. Murlykina,
  • Maryna N. Kornet,
  • Sergey M. Desenko,
  • Svetlana V. Shishkina,
  • Oleg V. Shishkin,
  • Aleksander A. Brazhko,
  • Vladimir I. Musatov,
  • Erik V. Van der Eycken and
  • Valentin A. Chebanov

Beilstein J. Org. Chem. 2017, 13, 1050–1063, doi:10.3762/bjoc.13.104

Graphical Abstract
  • , Zhukovsky str., 66, 69600, Zaporizhzhya, Ukraine Faculty of Chemistry, V. N. Karazin Kharkiv National University, Svobody sq., 4, 61077, Kharkiv, Ukraine 10.3762/bjoc.13.104 Abstract The well-known aminoazoles, 3-amino-5-methylisoxazole and 5-amino-N-aryl-1H-pyrazole-4-carboxamides, were studied as an
  • -aryl-1H-pyrazole-4-carboxamides; antibacterial activity; Groebke–Blackburn–Bienaymé reaction; isocyanide Ugi reaction; Introduction An intensive progress in pharmaceutical and medicinal chemistry, as well as in the generation and improvement of medicinal technologies has led to defeating a wide scope
  • sometimes similar to 3-amino-1,2,4-triazole that was described as a component of GBB-3CR earlier [71][72][73][74][75]. Therefore, the first type of aminoazoles studied in our work was 5-amino-N-aryl-1H-pyrazole-4-carboxamide that showed 1,3-binucleophile properties in the condensation with aromatic
PDF
Album
Supp Info
Full Research Paper
Published 31 May 2017

p-Nitrophenyl carbonate promoted ring-opening reactions of DBU and DBN affording lactam carbamates

  • Madhuri Vangala and
  • Ganesh P Shinde

Beilstein J. Org. Chem. 2016, 12, 2086–2092, doi:10.3762/bjoc.12.197

Graphical Abstract
  • nucleophiles towards halo derivatives of main group elements where the DBU and DBN bicyclic rings remained unaffected [10][11]. Later in 1994, Lammers et al. observed the nucleophilicity of amidine bases with 4-halo-3,5-dimethyl-1-nitro-1H-pyrazole and their subsequent ring opening leading to the lactam
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2016

Catalytic Chan–Lam coupling using a ‘tube-in-tube’ reactor to deliver molecular oxygen as an oxidant

  • Carl J. Mallia,
  • Paul M. Burton,
  • Alexander M. R. Smith,
  • Gary C. Walter and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2016, 12, 1598–1607, doi:10.3762/bjoc.12.156

Graphical Abstract
  • -phenyl-1H-pyrazole (18) as the nucleophile with a number of different phenylboronic acids gave moderate to good yields (38–82% yields). In general electron-rich phenylboronic acids (19, 29–32, Scheme 2) gave better yields than electron poor ones (33–35, Scheme 2). This is probably due to the more
  • -rich (65% yield) and electron-poor (38% yield) 2-substituted phenylboronic acids, most likely due to steric factors (31 and 35, Scheme 2). It is noteworthy that for all of the 3-phenyl-1H-pyrazole couplings, only the 1,3-disubsituted pyrazole products were obtained with no 1,5-disubsituted isomers
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2016

A convenient four-component one-pot strategy toward the synthesis of pyrazolo[3,4-d]pyrimidines

  • Mingxing Liu,
  • Jiarong Li,
  • Hongxin Chai,
  • Kai Zhang,
  • Deli Yang,
  • Qi Zhang and
  • Daxin Shi

Beilstein J. Org. Chem. 2015, 11, 2125–2131, doi:10.3762/bjoc.11.229

Graphical Abstract
  • -phenyl-1H-pyrazole-4-carbonitrile (6a) with benzaldehyde and ethanol, the cyclization of (E)-5-(benzylideneamino)-1-phenyl-1H-pyrazole-4-carbonitrile (7a) with ethanol or the reaction of 1,6-diphenyl-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one (5aa) with ethanol, respectively (Scheme 2). With those
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2015

Chiral phosphines in nucleophilic organocatalysis

  • Yumei Xiao,
  • Zhanhu Sun,
  • Hongchao Guo and
  • Ohyun Kwon

Beilstein J. Org. Chem. 2014, 10, 2089–2121, doi:10.3762/bjoc.10.218

Graphical Abstract
  •  23). Shortly after, the Lu group further expanded the substrate scope of asymmetric [3 + 2] annulations with allenoates to a series of 3,5-dimethyl-1H-pyrazole-derived acrylamides (Scheme 24) [55]. The dipeptide-based phosphine H10 effectively promoted the reaction in good to excellent yields, albeit
PDF
Album
Review
Published 04 Sep 2014

Synthesis of trifluoromethyl-substituted pyrazolo[4,3-c]pyridines – sequential versus multicomponent reaction approach

  • Barbara Palka,
  • Angela Di Capua,
  • Maurizio Anzini,
  • Gyté Vilkauskaité,
  • Algirdas Šačkus and
  • Wolfgang Holzer

Beilstein J. Org. Chem. 2014, 10, 1759–1764, doi:10.3762/bjoc.10.183

Graphical Abstract
  • . Oximes derived from (intermediate) 5-alkynyl-1-phenyl-3-trifluoromethyl-1H-pyrazole-4-carbaldehydes were transformed into the corresponding 1H-pyrazolo[4,3-c]pyridine 5-oxides by silver triflate-catalyzed cyclization. Detailed NMR spectroscopic investigations (1H, 13C, 15N and 19F) were undertaken with
  • pyrazole precursor. Employing the latter approach we recently presented a novel method for the synthesis of the pyrazolo[4,3-c]pyridine system by Sonogashira-type cross-coupling reaction of easily obtainable 5-chloro-1-phenyl-1H-pyrazole-4-carbaldehydes with various alkynes and subsequent ring-closure
  • reaction of the thus obtained 5-alkynyl-1H-pyrazole-4-carbaldehydes in the presence of tert-butylamine [17]. Furthermore, we showed that the oximes derived from the before mentioned 5-alkynylpyrazole-4-carbaldehydes can be transformed into the corresponding 1-phenylpyrazolo[4,3-c]pyridine 5-oxides [17
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2014
Other Beilstein-Institut Open Science Activities